×

Bifurcations, chaos analysis and control in a discrete predator-prey model with mixed functional responses. (English) Zbl 1541.39017

Summary: Many discrete systems have more distinctive dynamical behaviors compared to continuous ones, which has led lots of researchers to investigate them. The discrete predator-prey model with two different functional responses (Holling type I and II functional responses) is discussed in this paper, which depicts a complex population relationship. The local dynamical behaviors of the interior fixed point of this system are studied. The detailed analysis reveals this system undergoes flip bifurcation and Neimark-Sacker bifurcation. Especially, we prove the existence of Marotto’s chaos by analytical method. In addition, the hybrid control method is applied to control the chaos of this system. Numerical simulations are presented to support our research and demonstrate new dynamical behaviors, such as period-10, 19, 29, 39, 48 orbits and chaos in the sense of Li-Yorke.

MSC:

39A60 Applications of difference equations
39A28 Bifurcation theory for difference equations
39A33 Chaotic behavior of solutions of difference equations
37N25 Dynamical systems in biology
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Akhtar, S., Ahmed, R., Batool, M., Shah, N. A. and Chung, J. D., Stability, bifurcation and chaos control of a discretized Leslie prey-predator model, Chaos Solitons Fractals152 (2021) 111345. · Zbl 1498.92142
[2] AlSharawi, Z., Pal, N. and Chattopadhyay, J., The role of vigilance on a discrete-time predator-prey model, Discrete Contin. Dyn. Syst.-Ser. B27 (2022) 6723-6744. · Zbl 1500.92083
[3] Arias, C. F., Blé, G. and Falconi, M., Dynamics of a discrete-time predator-prey system with Holling II functional response, Qual. Theor. Dyn. Syst.21 (2022) 1-48. · Zbl 1486.37047
[4] Baleanu, D., Mohammadi, H. and Rezapour, S., Analysis of the model of HIV-1 infection of \(CD 4^+\) T-cell with a new approach of fractional derivative, Adv. Differ. Equ.71 (2020) 1-17. · Zbl 1482.37090
[5] Baleanu, D., Jajarmi, A., Mohammadi, H. and Rezapour, S., A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals134 (2020) 1-7. · Zbl 1483.92041
[6] Barman, D., Roy, J. and Alam, S., Impact of wind in the dynamics of prey-predator interactions, Math. Comput. Simul.191 (2022) 49-81. · Zbl 1540.92095
[7] Chou, Y. H., Chow, Y. S., Hu, X. and S. Jang, R.-J., A ricker-type predator-prey system with hunting cooperation in discrete time, Math. Comput. Simul.190 (2021) 570-586. · Zbl 1540.92103
[8] Din, Q., Gümüş, Ö.A. and Khalil, H., Neimark-Sacker bifurcation and chaotic behaviour of a modified host-parasitoid model, Z. Naturfors. Sect. A-J. Phys. Sci.72 (2017) 25-37.
[9] Din, Q., Controlling chaos in a discrete-time prey-predator model with Allee effects, Int. J. Dyn. Contr.6 (2018) 858-872.
[10] Din, Q. and Haider, K., Discretization, bifurcation analysis and chaos control for schnakenberg model, J. Math. Chem.58 (2020) 1615-1649. · Zbl 1447.39008
[11] Elettreby, M. F., Khawagi, A. and Nabil, T., Dynamics of a discrete prey-predator model with mixed functional response, Int. J. Bifur. Chaos29 (2019) 1950199. · Zbl 1432.39011
[12] Eskandari, Z., Alidousti, J., Avazzadeh, Z. and Machado, J. A. T., Dynamics and bifurcations of a discrete-time prey-predator model with Allee effect on the prey population, Ecol. Complex.48 (2021) 100962.
[13] Etemad, S., Avci, I., Kumar, P., Baleanu, D. and Rezapour, S., Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos, Solitons Fractals162 (2022) 1-15.
[14] Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983). · Zbl 0515.34001
[15] Holling, C. S., The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can.97 (1965) 5-60.
[16] Jang, S. R.-J., Zhang, W. J. and Larriva, V., Cooperative hunting in a predator-prey system with Allee effects in the prey, Nat. Resour. Model.31 (2018) e12194. · Zbl 1542.92111
[17] Khan, M. S., Samreen, M., Ozair, M., Hussain, T. and Gómez-Aguilar, J. F., Bifurcation analysis of a discrete-time compartmental model for hypertensive or diabetic patients exposed to COVID-19, Eur. Phys J. Plus136 (2021) 853.
[18] Khan, M. S., Samreen, M., Ozair, M., Hussain, T., Elsayed, E. M. and Gómez-Aguilar, J. F., On the qualitative study of a two-trophic plant-herbivore model, J. Math. Biol.85 (2022) 34. · Zbl 1498.92303
[19] Khan, M. S., Samreen, M., Gómez-Aguilar, J. F. and Pérez-Caretac, E., On the qualitative study of a discrete-time phytoplankton-zooplankton model under the effects of external toxicity in phytoplankton population, Heliyon8 (2022) e12415.
[20] Khana, H., Alama, K., Gulzarb, H., Etemadc, S. and Rezapourc, S., A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simul.198 (2022) 455-473. · Zbl 1540.92199
[21] Leard, B. and Rebaza, J., Analysis of predator-prey models with continuous threshold harvesting, Appl. Math. Comput.217 (2011) 5265-5278. · Zbl 1207.92046
[22] Li, W. X., Huang, L. H. and Wang, J. F., Global asymptotical stability and sliding bifurcation analysis of a general Filippov-type predator-prey model with a refuge, Appl. Math. Comput.405 (2021) 126263. · Zbl 1510.92171
[23] Li, W. and Li, X. Y., Neimark-Sacker bifurcation of a semi-discrete hematopoiesis model, J. Appl. Anal. Comput.8 (2018) 1679-1693. · Zbl 1457.37109
[24] Liu, Y. Q. and Li, X. Y., Dynamics of a discrete predator-prey model with Holling-II functional response, Int. J. Biomath.14 (2021) 2150068. · Zbl 1479.39023
[25] Li, T.-Y. and Yorke, J. A., Period three implies chaos, Am. Math. Mon.82 (1975) 985-992. · Zbl 0351.92021
[26] Lotka, A. J., Contribution to the theory of periodic reactions, J. Phys. Chem.14 (1925) 271-274.
[27] Luo, X. S., Chen, G. R., Wang, B. H. and Fang, J. Q., Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Solitons Fractals18 (2003) 775-783. · Zbl 1073.37512
[28] Ma, Y. D., Zhao, M. and Du, Y. F., Impact of the strong Allee effect in a predator-prey model, AIMS Math.7 (2022) 16296-16314.
[29] Marotto, F. R., Snap-back repellers imply chaos in \(\mathbb{R}^n\), J. Math. Anal. Appl.63 (1978) 199-223. · Zbl 0381.58004
[30] Marotto, F. R., On redefining a snap-back repeller, Chaos Solitons Fractals25 (2005) 25-28. · Zbl 1077.37027
[31] Matar, M. M., Abbas, M. I., Alzabut, J., Kaabar, M. K. A., Etemad, S. and Rezapour, S., Investigation of the \(p\)-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ.68 (2021) 1-18. · Zbl 1487.34028
[32] Mohammadi, H., Kumar, S., Rezapour, S. and Etemad, S., A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals144 (2021) 1-13.
[33] Murray, J. D., Mathematical Biology: I. An Introduction (Springer-Verlag, New York, 2002). · Zbl 1006.92001
[34] Ott, E., Grebogi, C. and Yorke, J. A., Controlling chaos, Phys. Rev. Lett.64 (1990) 1196. · Zbl 0964.37501
[35] Rezapour, S., Etemad, S. and Mohammadi, H., A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals, Adv. Differ. Equ.481 (2020) 1-30. · Zbl 1486.92273
[36] Tuan, N. H., Mohammadi, H. and Rezapour, S., A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Solitons Fractals140 (2020) 110107. · Zbl 1495.92104
[37] Volterra, V., Fluctuations in the abundance of a species considered mathematically, Nature118 (1926) 558-560. · JFM 52.0453.03
[38] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, (Springer-Verlag, New York, 1990). · Zbl 0701.58001
[39] Zhao, M., Ma, Y. D. and Du, Y. F., Global dynamics of an amensalism system with Michaelis-Menten type harvesting, Electron. Res. Arch.31 (2022) 549-574.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.