×

Regularity of aperiodic minimal subshifts. (English) Zbl 1407.37023

Summary: At the turn of this century Durand, and Lagarias and Pleasants established that key features of minimal subshifts (and their higher-dimensional analogues) to be studied are linearly repetitive, repulsive and power free. Since then, generalisations and extensions of these features, namely \(\alpha\)-repetitive, \(\alpha\)-repulsive and \(\alpha\)-finite (\(\alpha \geq 1\)), have been introduced and studied. We establish the equivalence of \(\alpha\)-repulsive and \(\alpha\)-finite for general subshifts over finite alphabets. Further, we studied a family of aperiodic minimal subshifts stemming from Grigorchuk’s infinite 2-group \(G\). In particular, we show that these subshifts provide examples that demonstrate \(\alpha\)-repulsive (and hence \(\alpha\)-finite) is not equivalent to \(\alpha\)-repetitive, for \(\alpha > 1\). We also give necessary and sufficient conditions for these subshifts to be \(\alpha\)-repetitive, and \(\alpha\)-repulsive (and hence \(\alpha\)-finite). Moreover, we obtain an explicit formula for their complexity functions from which we deduce that they are uniquely ergodic.

MSC:

37B50 Multi-dimensional shifts of finite type, tiling dynamics (MSC2010)
20E08 Groups acting on trees
37B10 Symbolic dynamics

References:

[1] Arnoux, P.; Rauzy, G., Représentation géométrique de suites de complexité \(2n+1\), Bull. Soc. Math. France, 119, 199-215, (1991) · Zbl 0789.28011 · doi:10.24033/bsmf.2164
[2] Baake, M., Grimm, U.: Aperiodic order: a mathematical invitation, vol. 1. In: Encyclopedia of Mathematics and Its Applications, vol. 149. Cambridge University Press, Cambridge, UK (2013) · Zbl 1295.37001
[3] Baake, M., Moody, R.V. (eds).: Directions in mathematical quasicrystals. CRM Monogr. Ser. 13. American Mathematical Society, Providence, RI (2000) · Zbl 0972.52013
[4] Berthé, V.: S-Adic Expansions Related to Continued Fractions. RIMS Kyokuroku Bessatsu B58, 61-84 (2016) · Zbl 1372.37024
[5] Berthé, V., Delecroix, V.: Beyond Substitutive Dynamical Systems: S-Adic Expansions, vol. B46 , pp. 81-123. RIMS Lecture note ‘Kokyuroku Bessatu’ (2014) · Zbl 1376.37033
[6] Berthe, V., Rigo, M.: Combinatorics, Automata and Number Theory, 1st edn. Cambridge University Press, New York (2010) · Zbl 1197.68006 · doi:10.1017/CBO9780511777653
[7] Bon, MN, Topological full groups of minimal subshifts with subgroups of intermediate growth, J. Mod. Dyn., 9, 67-80, (2015) · Zbl 1352.37037 · doi:10.3934/jmd.2015.9.67
[8] Boshernitzan, Michael, A unique ergodicity of minimal symbolic flows with linear block growth, Journal d’Analyse Mathématique, 44, 77-96, (1984) · Zbl 0602.28008 · doi:10.1007/BF02790191
[9] Conway, J.H., Guy, R.: The Book of Numbers. Copernicus, Germany (1995)
[10] Damanik, D.; Lenz, D., Substitution dynamical systems: characterization of linear repetitivity and applications, J. Math. Anal. Appl., 321, 766-780, (2006) · Zbl 1094.37007 · doi:10.1016/j.jmaa.2005.09.004
[11] Damanik, D.; Lenz, D., The index of sturmian sequences, Eur. J. Comb., 23, 23-29, (2002) · Zbl 1002.11020 · doi:10.1006/eujc.2000.0496
[12] Day, MM, Amenable semigroups, Ill. J. Math., 1, 509-544, (1957) · Zbl 0078.29402
[13] Durand, F., Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergod. Theory Dyn. Syst., 20, 1061-1078, (2000) · Zbl 0965.37013 · doi:10.1017/S0143385700000584
[14] Durand, F.; Host, F.; Skau, C., Substitution dynamical systems, Bratteli diagrams and dimension groups, Ergod. Theory Dyn. Syst., 19, 953-993, (1999) · Zbl 1044.46543 · doi:10.1017/S0143385799133947
[15] Fogg, NP; Berthé, V. (ed.); Ferenczi, S. (ed.); Mauduit, C. (ed.); Siegel, A. (ed.), Substitutions in dynamics, arithmetics and combinatorics, No. 1794, (2002), Berlin · Zbl 1014.11015
[16] Fuhrmann, G., Gröger, M., Jäger, T.: Amorphic complexity. Nonlinearity 29(2), 528 (2016) · Zbl 1355.37015 · doi:10.1088/0951-7715/29/2/528
[17] Grigorchuk, RI, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen., 14, 53-54, (1980) · Zbl 0595.20029 · doi:10.1007/BF01078416
[18] Grigorchuk, R., On the Milnor problem of group growth, Soviet Math. Dokl., 1, 23-26, (1983) · Zbl 0547.20025
[19] Grigorchuk, R., Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48, 939-985, (1984)
[20] Grigorchuk, R., Lenz, D., Nagnibeda, T.: Schreier Graphs of Grigorchuk’s Group and a Substitution Associated to a Non-primitive Subshift. arXiv:1510.00545 (2016) (Preprint) · Zbl 1371.05123
[21] Grigorchuk, R., Lenz, D., Nagnibeda, T.: Spectra of Schreier Graphs of Grigorchuk’s Group and Schroedinger Operators with Aperiodic Order. arXiv:1412.6822 (2016) (Preprint) · Zbl 1383.05196
[22] Gröger, M., Kesseböhmer, M., Mosbach, A., Samuel, T., Steffens, M.: A Classification of Aperiodic Order Via Spectral Metrics and Jarník Sets. arXiv:1601.06435 (2016) (Preprint)
[23] Kůrka, P.: Topological and Symbolic Dynamics. Société Mathématique de France, Marseille, France (2003) · Zbl 1038.37011
[24] Haynes, A., Koivusalo, H., Walton, J.: A Characterization of Linearly Repetitive Cut and Project Sets. arXiv:1503.04091 (2015) (Preprint) · Zbl 1384.52018
[25] Hedlund, GA; Morse, M., Symbolic dynamics II: Sturmian trajectories, Am. J. Math., 62, 1-42, (1940) · Zbl 0024.41702 · doi:10.2307/2371449
[26] Ishimasa, T.; Nissen, HU; Fukano, Y., New ordered state between crystalline and amorphous in Ni-Cr particles, Phys. Rev. Lett., 55, 511-513, (1985) · doi:10.1103/PhysRevLett.55.511
[27] Kellendonk, J.; Lenz, D.; Savinien, J., A characterization of subshifts with bounded powers, Discrete Math., 313, 2881-2894, (2013) · Zbl 1344.68179 · doi:10.1016/j.disc.2013.08.026
[28] Kellendonk, J.; Savinien, J., Spectral triples and characterization of aperiodic order, Proc. Lond. Math. Soc., 104, 123-157, (2012) · Zbl 1243.46062 · doi:10.1112/plms/pdr025
[29] Lagarias, JC, Geometric models for quasicrystals I. Delone sets of finite type, Discrete Comput. Geom., 21, 161-191, (1999) · Zbl 0924.68190 · doi:10.1007/PL00009413
[30] Lagarias, JC; Pleasants, PAB, Local complexity of Delone sets and crystallinity, Can. Math. Bull., 45, 634-652, (2002) · Zbl 1016.52013 · doi:10.4153/CMB-2002-058-0
[31] Lagarias, JC; Pleasants, PAB, Repetitive Delone sets and quasicrystals, Ergod. Theory Dyn. Syst., 23, 831-867, (2003) · Zbl 1062.52021 · doi:10.1017/S0143385702001566
[32] Lenz, D., Sell, D.: Private communication. Analysis & Geometry and Dynamical Systems & Mathematical Physics Seminar, 7 July 2016 (2016). http://www.ana-geo-seminars.uni-jena.de/Past+terms/Sommer+term+2016.html. Accessed 25 Mar 2017
[33] Lysenok, I.G.: A set of defining relations for the Grigorchuk group. (Russian), Mat. Zametki 38, 503-516 (1985). English translation: Math. Notes 38, 784-792 (1985) · Zbl 0595.20030
[34] Milnor, J., Problem 5603, Am. Math. Mon., 75, 685-686, (1968)
[35] Moody, R.V. (ed).: The mathematics of long-range aperiodic order. In: Proceedings of the NATO Advanced Study Institute Held in Waterloo, pp. 403-441, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 489. Kluwer Academic Publishers Group (1997) · Zbl 0880.43008
[36] Patera, J. (ed).: Quasicrystals and discrete geometry. In: Proceedings of the Fall Programme Held at the University of Toronto. Fields Inst. Monogr. 10. American Mathematical Society, Providence, RI (1998)
[37] Savinien, J., A metric characterisation of repulsive tilings, Discrete Comput. Geom., 54, 705-716, (2015) · Zbl 1326.52019 · doi:10.1007/s00454-015-9719-5
[38] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, JW, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 53, 1951-1953, (1984) · doi:10.1103/PhysRevLett.53.1951
[39] Solomyak, B., Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., 20, 265-279, (1998) · Zbl 0919.52017 · doi:10.1007/PL00009386
[40] Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics. Springer, Berlin (2013) · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.