×

Emergent anomalous transport and non-Gaussianity in a simple mobile-immobile model: the role of advection. (English) Zbl 07866321

Summary: We analyse the transport of diffusive particles that switch between mobile and immobile states with finite rates. We focus on the effect of advection on the density functions and mean squared displacements (MSDs). At relevant intermediate time scales we find strong anomalous diffusion with cubic scaling in time of the MSD for high Péclet numbers. The cubic scaling exists for short and long mean residence times in the immobile state \(\mathcal{T}_{\mathrm{im}}\). For long \(\mathcal{T}_{\mathrm{im}}\) the plateau in the MSD at intermediate times, previously found in the absence of advection, also exists for high Péclet numbers. Initially immobile tracers are subject to the newly observed regime of advection induced subdiffusion for short immobilisations and high Péclet numbers. In the long-time limit the effective advection velocity is reduced compared to advection in the mobile phase. In contrast, the MSD is enhanced by advection. We explore physical mechanisms behind the emerging non-Gaussian density functions and the features of the MSD.
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

References:

[1] Biggar, J. W.; Nelson, D. R.; Hagen, R. M., Miscible displacement and leaching phenomena, Irrigation of Agricultural Lands (Agronomy), vol 11, p 254 (1967), Madison, WI: American Society of Agronomy, Madison, WI
[2] Lapidus, L.; Amundson, N. R., Mathematica of adsorption in beds. VI. the effect of longitudinal diffusion in ion exchange and chromatographics columns, J. Phys. Chem., 56, 984 (1952) · doi:10.1021/j150500a014
[3] Coats, K. H.; Smith, B. D., Dead-end pore volume and dispersion in porous media, Soc. Pet. Eng. J., 4, 73 (1964) · doi:10.2118/647-PA
[4] Van Genuchten, M. T.; Wierenga, P. J., Mass transfer studies in sorbing porous media I. Analytical solutions, Soil Sci. Soc. Am. J., 40, 473 (1976) · doi:10.2136/sssaj1976.03615995004000040011x
[5] Doerries, T. J.; Chechkin, A. V.; Schumer, R.; Metzler, R., Rate equations, spatial moments and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.014105
[6] Michalak, A. M.; Kitanidis, P. K., Macroscopic behavior and random-walk particle tracking of kinetically sorbing solutes, Water Resour. Res., 36, 2133 (2000) · doi:10.1029/2000WR900109
[7] Goltz, M. N.; Tobrtyd, P. V., Using the method of moments to analyse three-dimensional diffusion-limited solute transport from temporal and spatial perspectives, Water Resour. Res., 23, 1575 (1987) · doi:10.1029/WR023i008p01575
[8] van Genuchten, M. T.; Wierenga, P. J., Mass transfer studies in sorbing porous media I. Analytical solutions, Soil Sci. Soc. Am. J., 40, 473 (1976) · doi:10.2136/sssaj1976.03615995004000040011x
[9] Deans, H. H., A mathematical model for dispersion in the direction of flow of porous media, Soc. Pet. Eng. J., 3, 49 (1963) · doi:10.2118/493-PA
[10] Sardin, M.; Schweich, D.; Leij, F. J.; van Genuchten, M. T., Modeling the nonequilibrium transport of linearly interacting solutes in porous media: a review, Water Resour. Res., 27, 2287 (1991) · doi:10.1029/91WR01034
[11] Haggerty, R.; Gorelick, S. M., Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resour. Res., 31, 2383 (1995) · doi:10.1029/95WR10583
[12] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Baeumer, B., Fractal mobile-immobile solute transport, Water Resour. Res., 39, 1296 (2003) · doi:10.1029/2003WR002141
[13] Dentz, M.; Berkowitz, B., Transport behavior of a passive solute in continuous time random walks and multirate mass transfer, Water Resour. Res., 39, 1 (2003) · doi:10.1029/2001WR001163
[14] Zhang, Y.; Benson, D. A.; Baeumer, B., Moment analysis for spatiotemporal fractional dispersion, Water Resour. Res., 44 (2008) · doi:10.1029/2007WR006291
[15] Gao, G.; Zhan, H.; Feng, S.; Fu, B.; Ma, Y.; Huang, G., A new mobile-immobile model for reactive solute transport with scale-dependent dispersion, Water Resour. Res., 46 (2010) · doi:10.1029/2009WR008707
[16] Lu, B.; Zhang, Y.; Zheng, C.; Green, C. T.; O’Neill, C.; Sun, H-G; Qian, J., Comparison of time nonlocal transport models for characterizing non-Fickian transport: from mathematical interpretation to laboratory application, Water, 10, 778 (2018) · doi:10.3390/w10060778
[17] Egusa, N.; Nakagawa, K.; Hirata, T., A retardation factor considering solute transfer between mobile and immobile water in porous media, Environ. Model. Assess., 26, 103 (2020) · doi:10.1007/s10666-020-09726-6
[18] Goeppert, N.; Goldscheider, N.; Berkowitz, B., Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer, Water Res., 178 (2020) · doi:10.1016/j.watres.2020.115755
[19] Weigel, A. V.; Simon, B.; Tamkun, M. M.; Krapf, D., Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking, Proc. Natl Acad. Sci. USA, 108, 6438 (2011) · doi:10.1073/pnas.1016325108
[20] Pulkkinen, O.; Metzler, R., Distance matters: the impact of gene proximity in bacterial gene regulation, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.198101
[21] Igaev, M.; Janning, D.; Sündermann, F.; Niewidok, B.; Brandt, R.; Junge, W., A refined reaction-diffusion model of tau-microtubule dynamics and its application in FDAP analysis, Biophys. J., 107, 2567 (2014) · doi:10.1016/j.bpj.2014.09.016
[22] Janning, D.; Igaev, M.; Sündermann, F.; Brühmann, J.; Beutel, O.; Heinisch, J. J.; Bakota, L.; Piehler, J.; Junge, W.; Brandt, R., Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons, Mol. Biol. Cell, 25, 3541 (2014) · doi:10.1091/mbc.e14-06-1099
[23] Yeung, C.; Shtrahman, M.; Wu, X-L, Stick-and-diffuse and caged diffusion: a comparison of two models of synaptic vesicle dynamics, Biophys. J., 92, 2271 (2007) · doi:10.1529/biophysj.106.081794
[24] Wu, M. M.; Covington, E. D.; Lewis, R. S., Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum-plasma membrane junctions, Mol. Biol. Cell, 25, 3672 (2014) · doi:10.1091/mbc.e14-06-1107
[25] Fernández, A. D.; Charchar, P.; Cherstvy, A. G.; Metzler, R.; Finnis, M. W., The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated, Phys. Chem. Chem. Phys., 22 (2020) · doi:10.1039/D0CP03849K
[26] van den Broek, B.; Lomholt, M. A.; Kalisch, S-M J.; Metzler, R.; Wuite, G. J L., How DNA coiling enhances target localization by proteins, Proc. Natl Acad. Soc., 105 (2008) · doi:10.1073/pnas.0804248105
[27] Mazza, D.; Abernathy, A.; Golob, N.; Morisaki, T.; McNally, J. G., A benchmark for chromatin binding measurements in live cells, Nucleic Acids Res., 40, e119 (2012) · doi:10.1093/nar/gks701
[28] Liu, Z.; Legant, W. R.; Chen, B-C; Li, L.; Grimm, J. B.; Lavis, L. D.; Betzig, E.; Tjian, R., 3D imaging of Sox2 enhancer clusters in embryonic stem cells, eLife, 3 (2014) · doi:10.7554/eLife.04236
[29] Sprague, B. L.; Pego, R. L.; Stavreva, D. A.; McNally, J. G., Analysis of binding reactions by fluorescence recovery after photobleaching, Biophys. J., 86, 3473 (2004) · doi:10.1529/biophysj.103.026765
[30] Chen, J., Single-molecule dynamics of enhanceosome assembly in embryonic stem cells, Cell, 156, 1274 (2014) · doi:10.1016/j.cell.2014.01.062
[31] Park, S.; Lee, O-C; Durang, X.; Jeon, J-H, A mini-review of the diffusion dynamics of DNA-binding proteins: experiments and models, J. Korean Phys. Soc., 78, 408 (2021) · doi:10.1007/s40042-021-00060-y
[32] Tafvizi, A.; Mirny, L. A.; van Oijen, A. M., Dancing on DNA: kinetic aspects of search processes on DNA, ChemPhysChem, 12, 1418 (2011) · doi:10.1002/cphc.201100112
[33] Tafvizi, A.; Huang, F.; Fersht, A. R.; Mirny, L. A.; van Oijen, A. M., A single-molecule characterization of p53 search on DNA, Proc. Natl Acad. Sci. USA, 108, 563 (2011) · doi:10.1073/pnas.1016020107
[34] Kong, M., Single-molecule imaging reveals that Rad4 employs a dynamic DNA damage recognition process, Mol. Cell, 64, 376 (2016) · doi:10.1016/j.molcel.2016.09.005
[35] Kamagata, K.; Mano, E.; Ouchi, K.; Kanabayashi, S.; Johnson, R. C., High free-energy barrier of 1D diffusion along DNA by architectural DNA-binding proteins, J. Mol. Biol., 430, 655 (2018) · doi:10.1016/j.jmb.2018.01.001
[36] Reverey, J. F.; Jeon, J-H; Bao, H.; Leippe, M.; Metzler, R.; Selhuber-Unkel, C., Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenoc Acanthamoeba castellanii, Sci. Rep., 5 (2015) · doi:10.1038/srep11690
[37] Wang, L.; Li, P. C H., Microfluidic DNA microarray analyis: a review, Anal. Chim. Acta, 687, 12 (2011) · doi:10.1016/j.aca.2010.11.056
[38] Squires, T. M.; Mesinger, R. J.; Manalis, R., Making it stick: convection, reaction and diffusion in surface-based biosensors, Nat. Biotechnol., 26, 417 (2008) · doi:10.1038/nbt1388
[39] Scher, H.; Montroll, E. W., Anomalous transient-time dispersion in amorphous solids, Phys. Rev. B, 12, 2455 (1975) · doi:10.1103/PhysRevB.12.2455
[40] Kurilovich, A. A.; Mantsevich, V. N.; Mardoukhi, Y.; Stevenson, K. J.; Chechkin, A. V.; Palyulin, V. V., Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides, Phys. Chem. Chem. Phys., 24 (2022) · doi:10.1039/D2CP00557C
[41] Kurilovich, A. A.; Mantsevich, V. N.; Stevenson, K. J.; Chechkin, A. V.; Palyulin, V. V., Complex diffusion-based kinetics of photoluminescence in semiconductor nanoplatelets, Phys. Chem. Chem. Phys., 22 (2020) · doi:10.1039/D0CP03744C
[42] Kurilovich, A. A.; Mantsevich, V. N.; Stevenson, K. J.; Chechkin, A. V.; Palyulin, V. V., Trapping-influenced photoluminescence intensity decay in semiconductor nanoplatelets, J. Phys.: Conf. Ser., 2015 (2021) · doi:10.1088/1742-6596/2015/1/012103
[43] Harvey, C. F.; Gorelick, S. M., Temporal moment-generating equations: modeling transport and mass transfer in heterogeneous aquifers, Water Resour. Res., 31, 1895 (1995) · doi:10.1029/95WR01231
[44] Hughes, B. D., Random Walks and Random Environments: Random Walks, vol 1 (1995), Oxford: Oxford University Press, Oxford · Zbl 0820.60053
[45] Montroll, E. W.; Weiss, G. H., Random walks on lattices. II, J. Math. Phys., 6, 167 (1965) · Zbl 1342.60067 · doi:10.1063/1.1704269
[46] Burov, S.; Wang, W.; Barkai, E., Exponential tails and asymmetry relations for the spread of biased random walks (2022)
[47] Edery, Y.; Guadagnini, A.; Scher, H.; Berkowitz, B., Origins of anomalous transport in heterogeneous media: structural and dynamic controls, Water Resour. Res., 50, 1490 (2014) · doi:10.1002/2013WR015111
[48] Margolin, G.; Dentz, M.; Berkowitz, B., Continuous time random walk and multirate mass transfer modeling of sorption, Chem. Phys., 295, 71 (2003) · doi:10.1016/j.chemphys.2003.08.007
[49] Krüsemann, H.; Godec, A.; Metzler, R., First-passage statistics for aging diffusion in systems with annealed and quenched disorder, Phys. Rev. E, 89 (2014) · doi:10.1103/PhysRevE.89.040101
[50] Berkowitz, B.; Klafter, J.; Metzler, R.; Scher, H., Physical pictures of transport in heterogeneous media: advection-dispersion, random-walk and fractional derivative formulations, Water Resour. Res., 38, 1191 (2002) · doi:10.1029/2001WR001030
[51] Weiss, G. H., The two-state random walk, J. Stat. Phys., 15, 157 (1976) · doi:10.1007/BF01012035
[52] Vitali, S.; Paradisi, P.; Pagnini, G., Anomalous diffusion originated by two Markovian hopping-trap mechanisms, J. Phys. A: Math. Theor., 55 (2022) · Zbl 1506.60111 · doi:10.1088/1751-8121/ac677f
[53] Hidalgo-Soria, M.; Barkai, E.; Burov, S., Cusp of non-Gaussian density of particles for a diffusing diffusivity model, Entropy, 23, 231 (2021) · doi:10.3390/e23020231
[54] Doerries, T. J.; Chechkin, A. V.; Metzler, R., Apparent anomalous diffusion and non-Gaussian distributions in a simple mobile-immobile transport model with Poissonian switching, J. R. Soc. Interface, 19 (2022) · doi:10.1098/rsif.2022.0233
[55] Gouze, P.; Le Borgne, T.; Leprovost, R.; Lods, G.; Poidras, T.; Pezard, P., Non-Fickian dispersion in porous media: 1. Multiscale measurements using single-well injection withdrawal tracer tests, Water Resour. Res., 44 (2008) · doi:10.1029/2007WR006278
[56] Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, J. W., Fine particle retention within stream storage areas at base flow and in response to a storm event, Water Resour. Res., 53, 5690-705 (2017) · doi:10.1002/2016WR020202
[57] Metzler, R.; Rajyaguru, A.; Berkowitz, B., Modelling anomalous diffusion in semi-infinite disordered systems and porous media, New J. Phys., 24 (2022) · doi:10.1088/1367-2630/aca70c
[58] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[59] Bochner, S., Harmonic Analysis and the Theory of Probability (1960), Berkeley, CA: Berkeley University Press, Berkeley, CA
[60] Chechkin, A. V.; Seno, F.; Metzler, R.; Sokolov, I. M., Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities, Phys. Rev. X, 7 (2017) · doi:10.1103/PhysRevX.7.021002
[61] Chechkin, A.; Sokolov, I. M., Relation between generalized diffusion equations and subordination schemes, Phys. Rev. E, 103 (2021) · doi:10.1103/PhysRevE.103.032133
[62] Gorenflo, R.; Mainardi, F., Some recent advances in theory and simulation of fractional diffusion processes, J. Comput. Appl. Math., 229, 400 (2009) · Zbl 1166.45004 · doi:10.1016/j.cam.2008.04.005
[63] Fogedby, H. C., Langevin equations for continuous time Lévy flights, Phys. Rev. E, 50, 1657 (1994) · doi:10.1103/PhysRevE.50.1657
[64] Eule, S.; Friedrich, R., Subordinated Langevin equations for anomalous diffusion in external potentials – biasing and decoupled external forces, Europhys. Lett., 86 (2009) · doi:10.1209/0295-5075/86/30008
[65] Gorenflo, R.; Mainardi, F.; Vivoli, A., Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34, 87 (2007) · Zbl 1142.82363 · doi:10.1016/j.chaos.2007.01.052
[66] Ross, S. M.; Lynch, D., A First Course in Probability, vol 8, p 362 (2010), London: Pearson, London · Zbl 1307.60002
[67] Muñoz-Gil, G., Objective comparison of methods to decode anomalous diffusion, Nat. Commun., 12, 6253 (2021) · doi:10.1038/s41467-021-26320-w
[68] Seckler, H.; Metzler, R., Bayesian deep learning for error estimation in the analysis of anomalous diffusion, Nat. Commun., 13, 6717 (2022) · doi:10.1038/s41467-022-34305-6
[69] Manzo, C.; Muñoz-Gil, G.; Volpe, G.; Garcia-March, M. A.; Lewenstein, M.; Metzler, R., Preface: characterisation of physical processes from anomalous diffusion data, J. Phys. A, 56 (2023) · Zbl 07657031 · doi:10.1088/1751-8121/acb1e1
[70] Boano, F.; Packman, A. I.; Cortis, A.; Revelli, R.; Ridolfi, L., A continuous time random walk approach to the stream transport of solutes, Water Resour. Res., 43, 1 (2007) · doi:10.1029/2007WR006062
[71] Barkai, E.; Burov, S., Packets of diffusing particles exhibit universal exponential tails, Phys. Rev. L, 124 (2020) · doi:10.1103/PhysRevLett.124.060603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.