×

Differential tests for plurisubharmonic functions and Koch curves. (English) Zbl 1421.32045

The authors study minimum sets for singular plurisubharmonic functions. In the planar case they prove the following criterion:
Any Jordan curve that can be parametrized so that \(A|z-s|^\gamma\leq|\varphi(t)-\varphi(s)|\leq B|t-s|^\gamma\) with \(\gamma\leq1\) such that \(\frac{2^{1-\gamma}}A<\frac1{\sin(\frac18(\sqrt{17}-1)\pi)}\), is a minimum set of a strictly subharmonic function on \(\mathbb C\setminus\{a\}\) for some \(a\) in the bounded component of the complement of the curve.
Special stress is put on the case of Koch curves.
In the second part of the paper the authors discuss the role played by the so-called “differential tests”. Let \(\varphi\) be an upper semicontinuous function on a domain \(\Omega\subset\mathbb C^n\). We say that \(\varphi\) allows a differential test from above at a point \(z\in\Omega\) if there exists a \(\mathcal C^2\) function \(q\) on a neighborhood \(V\subset\Omega\) of \(z\) such that \(\varphi(z)-q(z)=\sup_{w\in V}(\varphi(w)-q(w))\). The authors prove the following.
– There are sets \(E\subset\Omega\) of Hausdorff dimension \(>2n-1\) and functions \(\varphi\in\mathcal{PSH}(\Omega)\) such \(\varphi\) does not admit a differential test from above at any point of \(E\).
– If \(\varphi\in\mathcal{PSH}(\Omega)\), then \(\varphi\) allows a differential test from above at almost all points of \(\Omega\).
Moreover, the authors present a method of producing differential tests for certain plurisubharmonic functions.

MSC:

32W20 Complex Monge-Ampère operators
31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
32U05 Plurisubharmonic functions and generalizations
28A78 Hausdorff and packing measures

References:

[1] Akiyama, S., Loridant, B.: Boundary parametrization of self-affine tiles. J. Math. Soc. Jpn. 63(2), 525-579 (2011) · Zbl 1226.28006 · doi:10.2969/jmsj/06320525
[2] Astala, K.: Area distortion of quasiconformal mappings. Acta Math. 173(1), 37-60 (1994) · Zbl 0815.30015 · doi:10.1007/BF02392568
[3] Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1-41 (1982) · Zbl 0547.32012 · doi:10.1007/BF02392348
[4] Belyi, V.I.: Moduli of continuity of exterior and interior conformal mappings of the unit disc. Ukrain. Math. J. 41(4), 409-414 (1989) · Zbl 0692.30005 · doi:10.1007/BF01060617
[5] Bishop, C., Jones, P., Pemantle, R., Peres, Y.: The dimension of the Brownian frontier is greater than 1. J. Funct. Anal. 143(2), 309-336 (1997) · Zbl 0870.60077 · doi:10.1006/jfan.1996.2928
[6] Bocki, Z.: On uniform estimate in Calabi-Yau theorem, Proceedings of SCV2004, Beijing. Sci. China Ser. A Math. Supp. 48, 244-247 (2005) · Zbl 1128.32025 · doi:10.1007/BF02884710
[7] Caffarelli, L.: Interior W2,p estimates for solutions of the Monge-Ampère equation. Ann. of Math. 131, 135-150 (1990) · Zbl 0704.35044 · doi:10.2307/1971510
[8] Caffarelli, L., Crandall, M.G., Kocan, M., Świėch, A.: On viscosity solutions of fully non-linear equations with measurable ingredients. Comm. Pure Appl. Math. 49, 365-397 (1996) · Zbl 0854.35032 · doi:10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A
[9] Cantrell, M., Palagallo, J.: Self intersection points of generalized Koch curves. Fractals 19,213(2), 213-220 (2011) · Zbl 1222.28011 · doi:10.1142/S0218348X11005257
[10] Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277(1), 1-42 (1983) · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[11] Dinew, S., Dinew, ż.: The minimum sets and free boundaries of strictly plurisubharmonic functions. Calc. Var. 55. Article 148 (2016). https://doi.org/10.1007/s00526-016-1069-5 · Zbl 1366.32014
[12] Dinew, S., Guedj, V., Zeriahi, A.: Open Problems in Pluripotential Theory. Compl. Var. Ell Eq. 61(7), 902-930 (2016) · Zbl 1345.32040 · doi:10.1080/17476933.2015.1121481
[13] Eyssidieux, P., Guedj, V., Zeriahi, A.: Viscosity solutions to complex monge-ampère equations. Comm. Pure Appl. Math. 64(8), 1059-1094 (2011) · Zbl 1227.32042 · doi:10.1002/cpa.20364
[14] Ghamsari, M., Herron, D.A.: Bilipschitz homogeneous Jordan curves. Trans. Amer. Math. Soc. 351(8), 3197-3216 (1999) · Zbl 0922.30017 · doi:10.1090/S0002-9947-99-02324-7
[15] Gutiérrez, C.: The Monge-Ampère Equation, Progress in Nonlinear Differential Equations and their Applications, vol. 44. Birkhäuser Boston, Inc., Boston (2001). pp. xii+ 127 ISBN: 0-8176-4177-7 · Zbl 0989.35052
[16] Harvey, F.R., Wells, R.O.: Zero sets of non-negative strictly plurisubharmonic functions. Math. Ann. 201, 165-170 (1973) · Zbl 0253.32009 · doi:10.1007/BF01359794
[17] Iseli, A., Wildrick, K.: Iterated function system quasiarcs. Conform. Geom. Dyn. 21, 78-100 (2017) · Zbl 1359.28008 · doi:10.1090/ecgd/305
[18] Lehto, O.: Univalent Functions and Teichmüller Spaces, Graduate texts in mathematics, vol. 109. Springer, New York (1987). pp. xii+ 259 ISBN-13: 978-1-4613-8654-4 · Zbl 0606.30001 · doi:10.1007/978-1-4613-8652-0
[19] Lehto, O., Virtanen, K.J.: Quasikonforme Abbildungen, Grundlehren der mathematischen Wissenschaften, vol. 126. Springer, Berlin (1965). pp. xi+ 269 ISBN 978-3-662-42595-4 · Zbl 0138.30301
[20] Lesley, F.: On Interior and Conformal Mappings of the Disk. J. London Math. Soc. s2-20(1), 67-78 (1979) · Zbl 0406.30004 · doi:10.1112/jlms/s2-20.1.67
[21] Lesley, F.: Hölder continuity of conformal mappings at the boundary via the strip method. Indiana Univ. Math. J. 31(3), 341-354 (1982) · Zbl 0497.30013 · doi:10.1512/iumj.1982.31.31030
[22] Lesley, F.: Domains with Lipschitz mapping Functions. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 8, 219-233 (1983) · Zbl 0544.30007 · doi:10.5186/aasfm.1983.0818
[23] Näkki, R., Palka, B.: Quasiconformal circles and Lipschitz classes. Comment. Math. Helv. 55(3), 485-498 (1980) · Zbl 0447.30005 · doi:10.1007/BF02566700
[24] Pierzchała, R.: The Ł ojasiewicz-Siciak condition of the pluricomplex Green function. Potential Anal. 40(1), 41-56 (2014) · Zbl 1286.32016 · doi:10.1007/s11118-013-9339-8
[25] Pommerenke, C.H.: Boundary Behaviour of Conformal Maps. Boundary Behaviour of Conformal Maps Grundlehren der Mathematischen Wissenschaften, vol. 299. Springer, Berlin (1992) · Zbl 0762.30001
[26] Ponomarev, S.P.: On Hausdorff dimensions of quasiconformal curves. Sib. Math. J. 34(4), 717-722 (1993) · Zbl 0806.30018 · doi:10.1007/BF00975174
[27] Ponomarev, S.P.: On some properties of Van Koch curves. Sib. Math. J. 48(6), 1046-1059 (2007) · Zbl 1164.47324 · doi:10.1007/s11202-007-0107-0
[28] Rohde, S.: Quasicircles modulo bilipschitz maps. Rev. Mat. Iberoamer. 17(3), 643-659 (2001) · Zbl 1003.30013 · doi:10.4171/RMI/307
[29] Sakai, A.: The intersection of the closures of two disjoint strongly pseudoconvex domains. Math. Ann. 260(1), 117-118 (1982) · Zbl 0469.31009 · doi:10.1007/BF01475759
[30] Smirnov, S.: Dimension of quasicircles. Acta Math. 205(1), 189-197 (2010) · Zbl 1211.30037 · doi:10.1007/s11511-010-0053-8
[31] Stout, E.L.: Polynomial Convexity. Progress in Mathematics, vol. 261. Birkhäuser Boston, Inc., Boston (2007). pp. xii+ 439 ISBN: 978-0-8176-4537-3; 0-8176-4537-3 · Zbl 1124.32007
[32] Trudinger, N.S.: On the twice differentiability of viscosity solutions of nonlinear elliptic equations. Bull. Austral. Math. Soc. 39(3), 443-447 (1989) · Zbl 0706.35031 · doi:10.1017/S0004972700003361
[33] Tsuji, M.: Potential Theory in Modern Function Theory. Chelsea Publishing Company, New York (1959). pp. x + 590 ISBN: 0-8284-0281-7 · Zbl 0087.28401
[34] Wang, Y.: A viscosity approach to the Dirichlet problem for complex Monge-Ampère equations. Math. Z. 272(1-2), 497-513 (2012) · Zbl 1267.32040 · doi:10.1007/s00209-011-0946-z
[35] Zeriahi, A.: A viscosity approach to degenerate complex Monge-Ampère equations. Ann. Fac. Sci. Toulouse Math. (6) 22(4), 843-913 (2013) · Zbl 1334.32016 · doi:10.5802/afst.1390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.