×

Numerical analysis of stretching/shrinking fully wet trapezoidal fin. (English) Zbl 07927802

Summary: The purpose of fins or extended surfaces is to increase the dissipation of heat from hot sources into their surroundings. Fins like annular fins, longitudinal fins, porous fins, and radial fins are used on the surface of equipments to enhance the rate of heat transfer. There are many applications of fins, including superheaters, refrigeration, automobile parts, combustion engines, electrical equipment, solar panels, and computer CPUs. Based on a wide range of applications, the effects of stretching/shrinking on a fully wet trapezoidal fin with internal heat generation is investigated. The shooting approach is used to calculate the trapezoidal fin’s thermal profile, tip temperature, and efficiency. It is observed that with an increase in the shrinking and wet parameter, the temperature distribution decreases and efficiency increases. On the other hand, when stretching increases, the temperature distribution increases and efficiency diminishes. Using the computed results, it is concluded that shrinking trapezoidal fins improves the effectiveness and performance of the system.

MSC:

74Fxx Coupling of solid mechanics with other effects
74Sxx Numerical and other methods in solid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] A. D. Kraus, A. Aziz, J. Welty, D. P. Sekulic, Extended surface heat transfer, Appl. Mech. Rev., 54 (2001), B92. https://doi.org/10.1115/1.1399680 doi: 10.1115/1.1399680 · doi:10.1115/1.1399680
[2] S. Kalpakjian, Manufacturing Engineering and Technology, Chennai: Pearson Education (India), 2001.
[3] Y. Shi, Q. Lan, X. Lan, J. Wu, T. Yang, B. Wang, Robust optimization design of a flying wing using adjoint and uncertainty-based aerodynamic optimization approach, Struct Multidisc Optim, 66 (2023), 110. https://doi.org/10.1007/s00158-023-03559-z doi: 10.1007/s00158-023-03559-z · doi:10.1007/s00158-023-03559-z
[4] Y. Shi, C. Song, Y. Chen, H. Rao, T. Yang, Complex standard eigenvalue problem derivative computation for laminar-turbulent transition prediction, AIAA J., 61 (2023), 3404-3418. https://doi.org/10.2514/1.J062212 doi: 10.2514/1.J062212 · doi:10.2514/1.J062212
[5] T. S. Mogaji, F. D. Owoseni, Numerical analysis of radiation effect on heat flow through fin of rectangular profile, Am. J. Eng. Res., 6 (2017), 36-46.
[6] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Tran., 116 (2018), 346-351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091 · doi:10.1016/j.ijheatmasstransfer.2017.08.091
[7] Z. U. Din, A. Ali, Z. A. Khan, G. Zaman, Investigation of moving trapezoidal and exponential fins with multiple nonlinearities, Ain Shams Eng. J., 14 (2023), 101959. https://doi.org/10.1016/j.asej.2022.101959 doi: 10.1016/j.asej.2022.101959 · doi:10.1016/j.asej.2022.101959
[8] M. Torabi, H. Yaghoobi, A. Aziz, Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity, Int. J. Thermophys., 33 (2012), 924-941. https://doi.org/10.1007/s10765-012-1179-z doi: 10.1007/s10765-012-1179-z · doi:10.1007/s10765-012-1179-z
[9] S. Mosayebidorcheh, T. Mosayebidorcheh, Series solution of convective radiative conduction equation of the nonlinearfin with temperature dependent thermal conductivity, Int. J. Heat Mass Tran., 55 (2012), 6589-6594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.066 doi: 10.1016/j.ijheatmasstransfer.2012.06.066 · doi:10.1016/j.ijheatmasstransfer.2012.06.066
[10] M. Miansari, D. D. Ganji, M. Miansari, Application of He’s variational iteration method to nonlinear heat transfer equations, Phys. Lett. A, 372 (2008), 779-785. https://doi.org/10.1016/j.physleta.2007.08.065 doi: 10.1016/j.physleta.2007.08.065 · Zbl 1217.80067 · doi:10.1016/j.physleta.2007.08.065
[11] A. R. Shateri, B. Salahshour, Comprehensive thermal performance of convection radiation longitudinal porousfins with various profiles and multiple nonlinearities, Int. J. Mech. Sci., 136 (2018), 252-263. https://doi.org/10.1016/j.ijmecsci.2017.12.030 doi: 10.1016/j.ijmecsci.2017.12.030 · doi:10.1016/j.ijmecsci.2017.12.030
[12] R. S. V. Kumar, R. N. Kumar, G. Sowmya, B. C. Prasannakumara, I. E. Sarris, Exploration of temperature distribution through a longitudinal rectangular fin with linear and exponential temperature-dependent thermal conductivity using DTM-Pade approximant, Symmetry, 14 (2022), 690. https://doi.org/10.3390/sym14040690 doi: 10.3390/sym14040690 · doi:10.3390/sym14040690
[13] G. Sowmya, R. S. V. Kumar, Y. Banu, Thermal performance of a longitudinal fin under the influence of magnetic field using Sumudu transform method with pade approximant (STM‐PA), Z. Angew. Math. Mech., 103 (2023), e202100526. https://doi.org/10.1002/zamm.202100526 doi: 10.1002/zamm.202100526 · Zbl 1536.74048 · doi:10.1002/zamm.202100526
[14] D. W. Mueller Jr, H. I. Abu-Mulaweh, Prediction of the temperature in a fin cooled by natural convection and radiation, Appl. Therm. Eng., 26 (2006), 1662-1668. https://doi.org/10.1016/j.applthermaleng.2005.11.014 doi: 10.1016/j.applthermaleng.2005.11.014 · doi:10.1016/j.applthermaleng.2005.11.014
[15] Z.Wang, S. Wang, X. Wang, X. Luo, Underwater moving object detection using superficial electromagnetic flow velometer array based artificial lateral line system, IEEE Sens. J., 24 (2024), 12104-12121. https://doi.org/10.1109/JSEN.2024.3370259 doi: 10.1109/JSEN.2024.3370259 · doi:10.1109/JSEN.2024.3370259
[16] Z. Wang, S. Wang, X. Wang, X. Luo, Permanent magnet-based superficial flow velometer with ultralow output drift, IEEE Trans. Instrum. Meas., 72 (2023). https://doi.org/10.1109/TIM.2023.3304692 doi: 10.1109/TIM.2023.3304692 · doi:10.1109/TIM.2023.3304692
[17] J. A. Edwards, J. B. Chaddock, An experimental investigation of the radiation and free convection heat transfer from a cylindrical disk extended surface, Trans. Am. Soc. Heat, Refrigerating, Air-Conditioning Eng., 69 (1963), 313-322.
[18] C. Arslanturk, Optimum design of space radiators with temperature-dependent thermal conductivity, Appl. Therm. Eng., 26 (2006), 1149-1157. https://doi.org/10.1016/j.applthermaleng.2005.10.038 doi: 10.1016/j.applthermaleng.2005.10.038 · doi:10.1016/j.applthermaleng.2005.10.038
[19] M. Torabi, Q. Zhang, Analytical solution for evaluating the thermal performance and efficiency of convective-radiative straight fins with various profiles and considering all non-linearities, Energy Convers. Manage., 66 (2013), 199-210. https://doi.org/10.1016/j.enconman.2012.10.015 doi: 10.1016/j.enconman.2012.10.015 · doi:10.1016/j.enconman.2012.10.015
[20] D. Bhanja, B. Kundu, Radiation effect on optimum design analysis of a constructal T-shaped fin with variable thermal conductivity, Heat Mass Transfer, 48 (2012), 109-122. https://doi.org/10.1007/s00231-011-0845-1 doi: 10.1007/s00231-011-0845-1 · doi:10.1007/s00231-011-0845-1
[21] B. V. Karlekar, B. T. Chao, Mass minimization of radiating trapezoidal fins with negligible base cylinder interaction, Int. J. Heat Mass Tran., 6 (1963), 33-48. https://doi.org/10.1016/0017-9310(63)90027-9 doi: 10.1016/0017-9310(63)90027-9 · doi:10.1016/0017-9310(63)90027-9
[22] H. Azarkish, S. M. H. Sarvari, A. Behzadmehr, Optimum geometry design of a longitudinal fin with volumetric heat generation under the influences of natural convection and radiation, Energy Convers. Manage., 51 (2010), 1938-1946. https://doi.org/10.1016/j.enconman.2010.02.026 doi: 10.1016/j.enconman.2010.02.026 · doi:10.1016/j.enconman.2010.02.026
[23] M. Turkyilmazoglu, Thermal performance of optimum exponential fin profiles subjected to a temperature jump, Int. J. Numer. Method. H., 32 (2022), 1002-1011. https://doi.org/10.1108/HFF-02-2021-0132 doi: 10.1108/HFF-02-2021-0132 · doi:10.1108/HFF-02-2021-0132
[24] S. B. Prakash, K. Chandan, K. Karthik, S. Devanathan, R. S. V. Kumar, K. V. Nagaraja, et al., Investigation of the thermal analysis of a wavy fin with radiation impact: an application of extreme learning machine, Phys. Scr., 99 (2023), 015225. https://doi.org/10.1088/1402-4896/ad131f doi: 10.1088/1402-4896/ad131f · doi:10.1088/1402-4896/ad131f
[25] M. H. Sharqawy, S. M. Zubair, Efficiency and optimization of straight fins with combined heat and mass transfer-An analytical solution, Appl. Therm. Eng., 28 (2008), 2279-2288. https://doi.org/10.1016/j.applthermaleng.2008.01.003 doi: 10.1016/j.applthermaleng.2008.01.003 · doi:10.1016/j.applthermaleng.2008.01.003
[26] M. Hatami, G. R. M. Ahangar, D. D. Ganji, K. Boubaker, Refrigeration efficiency analysis for fully wet semi-spherical porous fins, Energy Convers. Manage., 84 (2014), 533-540. https://doi.org/10.1016/j.enconman.2014.05.007 doi: 10.1016/j.enconman.2014.05.007 · doi:10.1016/j.enconman.2014.05.007
[27] F. khani, M. T. Darvishi, R. S. R. Gorla, B. J. Gireesha, Thermal analysis of a fully wet porous radial fin with natural convection and radiation using the spectral collocation method, Int. J. Appl. Mech. Eng., 21 (2016), 377-392. https://doi.org/10.1515/ijame-2016-0023 doi: 10.1515/ijame-2016-0023 · doi:10.1515/ijame-2016-0023
[28] B. S. Poornima, I. E. Sarris, K. Chandan, K. V. Nagaraja, R. V. Kumar, S. B. Ahmed, Evolutionary computing for the radiative-convective heat transfer of a wetted wavy fin using a genetic algorithm-based neural network, Biomimetics, 8 (2023), 574. https://doi.org/10.3390/biomimetics8080574 doi: 10.3390/biomimetics8080574 · doi:10.3390/biomimetics8080574
[29] R. S. V. Kumar, I. E. Sarris, G. Sowmya, A. Abdulrahman, Iterative solutions for the nonlinear heat transfer equation of a convective-radiative annular fin with power law temperature-dependent thermal properties, Symmetry, 15 (2023), 1204. https://doi.org/10.3390/sym15061204 doi: 10.3390/sym15061204 · doi:10.3390/sym15061204
[30] M. Turkyilmazoglu, Stretching/shrinking longitudinal fins of rectangular profile and heat transfer, Energy Convers. Manage., 91 (2015), 199-203. https://doi.org/10.1016/j.enconman.2014.12.007 doi: 10.1016/j.enconman.2014.12.007 · doi:10.1016/j.enconman.2014.12.007
[31] B. J. Gireesha, M. L. Keerthi, G. Sowmya, Effects of stretching/shrinking on the thermal performance of a fully wetted convective-radiative longitudinal fin of exponential profile, Appl. Math. Mech.-Engl. Ed., 43 (2022), 389-402. https://doi.org/10.1007/s10483-022-2836-6 doi: 10.1007/s10483-022-2836-6 · Zbl 1493.74005 · doi:10.1007/s10483-022-2836-6
[32] M. Mosavat, R. Moradi, M. R. Takami, M. B. Gerdroodbary, D. D. Ganji, Heat transfer study of mechanical face seal and fin by analytical method, Eng. Sci. Technol. Int. J., 21 (2018), 380-388. https://doi.org/10.1016/j.jestch.2018.05.001 doi: 10.1016/j.jestch.2018.05.001 · doi:10.1016/j.jestch.2018.05.001
[33] Z. U. Din, A. Ali, S. Ullah, G. Zaman, K. Shah, N. Mlaiki, Investigation of heat transfer from convective and radiative stretching/shrinking rectangular fins, Math. Probl. Eng. 2022 (2022), 1026698. https://doi.org/10.1155/2022/1026698 doi: 10.1155/2022/1026698 · doi:10.1155/2022/1026698
[34] F. Khani, A. Aziz, Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient, Commun. Nonlinear Sci., 15 (2010), 590-601. https://doi.org/10.1016/j.cnsns.2009.04.028 doi: 10.1016/j.cnsns.2009.04.028 · doi:10.1016/j.cnsns.2009.04.028
[35] H. S. Kang, Analysis of reversed trapezoidal fins using a 2-D analytical method, Univ. J. Mech. Eng., 3 (2015), 202-207. https://doi.org/10.13189/ujme.2015.030505 doi: 10.13189/ujme.2015.030505 · doi:10.13189/ujme.2015.030505
[36] R. Das, Estimation of feasible materials and thermal conditions in a trapezoidal fin using genetic algorithm, Proc Inst Mech Eng G J Aerosp Eng, 230 (2016), 2356-2368. https://doi.org/10.1177/0954410015623975 doi: 10.1177/0954410015623975 · doi:10.1177/0954410015623975
[37] M. Turkyilmazoglu, Efficiency of the longitudinal fins of trapezoidal profile in motion, J. Heat Transfer, 139 (2017), 094501. https://doi.org/10.1115/1.4036328 doi: 10.1115/1.4036328 · doi:10.1115/1.4036328
[38] T. O. Onah, A. M. Nwankwo, F. L. Tor, Design and development of a trapezoidal plate fin heat exchanger for the prediction of heat exchanger effectiveness, Eur J Mech Eng Res, 6 (2019), 21-36.
[39] B. J. Gireesha, M. L. Keerthi, D. O. Soumya, Study on efficiency of fully wet porous trapezoidal fin structures in the presence of convection and radiation, J Eng Manage, 5 (2021), 66-72.
[40] B. J. Gireesha, M. L. Keerthi, Effect of periodic heat transfer on the transient thermal behavior of a convective-radiative fully wet porous moving trapezoidal fin, Appl. Math. Mech.-Engl. Ed., 44 (2023), 653-668. https://doi.org/10.1007/s10483-023-2974-6 doi: 10.1007/s10483-023-2974-6 · Zbl 1516.65077 · doi:10.1007/s10483-023-2974-6
[41] W. Waseem, M. Sulaiman, S. Islam, P. Kumam, R. Nawaz, M. A. Z. Raja, et al., A study of changes in temperature profile of porous fin model using cuckoo search algorithm, Alex. Eng. J., 59 (2020), 11-24. https://doi.org/10.1016/j.aej.2019.12.001 doi: 10.1016/j.aej.2019.12.001 · doi:10.1016/j.aej.2019.12.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.