×

The fast multipole boundary element method for anisotropic material problems under centrifugal loads. (English) Zbl 07855333

MSC:

74-XX Mechanics of deformable solids
65-XX Numerical analysis

Software:

AEPH
Full Text: DOI

References:

[1] Jaswon, M. A., Integral equation methods in potential theory. I, Proc R Soc A, 275, 1360, 23-32, 1963 · Zbl 0112.33103
[2] Symm, G. T., Integral equation methods in potential theory. II, Proc R Soc A, 275, 1360, 33-46, 1963 · Zbl 0112.33201
[3] Jaswon, M. A.; Ponter, A. R., An integral equation solution of the torsion problem, Proc R Soc A, 273, 1353, 237-246, 1963 · Zbl 0112.16703
[4] Hackbusch, W.; Nowak, Z. P., On the fast matrix multiplication in the boundary element method by panel clustering, Numer Math, 54, 4, 463-491, 1989 · Zbl 0641.65038
[5] Börm, S., Construction of data-sparse \(H^2\)-matrices by hierarchical compression, SIAM J Sci Comput, 31, 3, 1820-1839, 2009 · Zbl 1193.65043
[6] Bebendorf, M., Approximation of boundary element matrices, Numer Math, 86, 4, 565-589, 2000 · Zbl 0966.65094
[7] Bebendorf, M.; Rjasanow, S., Adaptive low-rank approximation of collocation matrices, Computing, 70, 1, 1-24, 2003 · Zbl 1068.41052
[8] Bastos, E.; de Albuquerque, É. L.; Campos, L. S.; Wrobel, L. C., Two accelerated isogeometric boundary element method formulations: fast multipole method and hierarchical matrices method, Lat Am J Solids Struct, 19, 7, 1-26, 2022
[9] Liu, Y., A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems, Internat J Numer Methods Engrg, 65, 6, 863-881, 2006 · Zbl 1121.74061
[10] Rokhlin, V., Rapid solution of integral equations of classical potential theory, J Comput Phys, 60, 2, 187-207, 1985 · Zbl 0629.65122
[11] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J Comput Phys, 73, 2, 325-348, 1987 · Zbl 0629.65005
[12] Dongarra, J.; Sullivan, F., Guest editors introduction to the top 10 algorithms, Comput Sci Eng, 2, 1, 22-23, 2000
[13] Liu, Y., Fast multipole boundary element method, 2009, Cambridge University Press
[14] Barnes, J.; Hut, P., A hierarchical \(O( N \log N)\) force-calculation algorithm, Nature, 324, 6096, 446-449, 1986
[15] Mullen, R. L.; Rencis, J. J., Iterative methods for solving boundary element equations, Comput Struct, 25, 5, 713-723, 1987 · Zbl 0603.73082
[16] Kane, J. H.; Keyes, D. E.; Prasad, K. G., Iterative solution techniques in boundary element analysis, Internat J Numer Methods Engrg, 31, 8, 1511-1536, 1991 · Zbl 0825.73901
[17] Mansur, W. J.; Araújo, F. C.; Malaghini, J. E.B., Solution of BEM systems of equations via iterative techniques, Internat J Numer Methods Engrg, 33, 9, 1823-1841, 1992 · Zbl 0767.73085
[18] Prasad, K. G.; Kane, J. H.; Keyes, D. E.; Balakrishna, C., Preconditioned Krylov solvers for BEA, Internat J Numer Methods Engrg, 37, 10, 1651-1672, 1994 · Zbl 0800.73504
[19] Barra, L.; Coutinho, A.; Mansur, W.; Telles, J., Iterative solution of bem equations by GMRES algorithm, Comput Struct, 44, 6, 1249-1253, 1992
[20] Greengard, L., Fast algorithms for composite materials, MRS Proc, 408, 93-97, 1995
[21] Greengard, L.; Helsing, J., On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites, J Mech Phys Solids, 46, 8, 1441-1462, 1998 · Zbl 0955.74054
[22] Haitao, W.; Zhenhan, Y., Application of a new fast multipole BEM for simulation of 2D elastic solid with large number of inclusions, Acta Mech Sin, 20, 6, 613-622, 2004
[23] Zhu, X.; Chen, W.; Huang, Z.; Liu, Y., Fast multipole boundary element analysis of 2D viscoelastic composites with imperfect interfaces, Sci China Technol Sci, 53, 8, 2160-2171, 2010 · Zbl 1386.74147
[24] Liu, Y.; Nishimura, N.; Otani, Y., Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method, Comput Mater Sci, 34, 2, 173-187, 2005
[25] Wang, D. F.; Fukui, T.; Kobayashi, T., Analysis of multi-crack problems in orthotropic elastic body based on fast multipole boundary element, J Jascome, 5, 2, 183-188, 2005
[26] Wang, Q.; Miao, Y.; Zhu, H., A fast multipole hybrid boundary node method for composite materials, Comput Mech, 51, 6, 885-897, 2012 · Zbl 1366.74082
[27] Zhang, J.; Zhuang, C.; Qin, X.; Li, G.; Sheng, X., FMM-accelerated hybrid boundary node method for multi-domain problems, Eng Anal Bound Elem, 34, 5, 433-439, 2010 · Zbl 1244.74239
[28] Barbarino, M.; Bianco, D., A BEM-FMM approach applied to the combined convected Helmholtz integral formulation for the solution of aeroacoustic problems, Comput Methods Appl Mech Engrg, 342, 585-603, 2018 · Zbl 1440.76048
[29] Ptaszny, J.; Fedelińnaski, P., Numerical homogenization by using the fast multipole boundary element method, Arch Civ Mech Eng, 11, 1, 181-193, 2011
[30] Li, S.; Trevelyan, J.; Zhang, W.; Wang, D., Accelerating isogeometric boundary element analysis for 3-dimensional elastostatics problems through black-box fast multipole method with proper generalized decomposition, Internat J Numer Methods Engrg, 114, 9, 975-998, 2018 · Zbl 07878393
[31] Hwu, C., Anisotropic elasticity with matlab, 2022, Springer International Publishing
[32] Fahmy, M. A., A new boundary element algorithm for modeling and simulation of nonlinear thermal stresses in micropolar FGA composites with temperature-dependent properties, Adv Model Simul Eng Sci, 8, 1, 2021
[33] Cordeiro, S. G.F.; Leonel, E. D., Cohesive crack propagation modelling in wood structures using BEM and the Tangent Operator Technique, Eng Anal Bound Elem, 64, 111-121, 2016 · Zbl 1403.74157
[34] Yin, J.; Barnett, D. M.; Fitzgerald, S. P.; Cai, W., Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions, Modelling Simul Mater Sci Eng, 20, 4, Article 045015 pp., 2012
[35] Benedetti, I.; Milazzo, A.; Aliabadi, M. H., A fast dual boundary element method for 3D anisotropic crack problems, Internat J Numer Methods Engrg, 80, 10, 1356-1378, 2009 · Zbl 1183.74334
[36] Akaiwa, N.; Thornton, K.; Voorhees, P., Large-scale simulations of microstructural evolution in elastically stressed solids, J Comput Phys, 173, 1, 61-86, 2001 · Zbl 1056.74057
[37] Sollero, P.; Aliabadi, M. H., Fracture mechanics analysis of anisotropic plates by the boundary element method, Int J Fract, 64, 4, 269-284, 1993
[38] Albuquerque, E. L.; Sollero, P.; Aliabadi, M. H., Dual boundary element method for anisotropic dynamic fracture mechanics, Internat J Numer Methods Engrg, 59, 9, 1187-1205, 2004 · Zbl 1041.74555
[39] Albuquerque, E.; Sollero, P.; Fedelinski, P., Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems, Comput Struct, 81, 17, 1703-1713, 2003
[40] Albuquerque, E.; Sollero, P.; Fedelinski, P., Free vibration analysis of anisotropic material structures using the boundary element method, Eng Anal Bound Elem, 27, 10, 977-985, 2003 · Zbl 1045.74608
[41] Albuquerque, E.; Sollero, P.; Aliabadi, M., The boundary element method applied to time dependent problems in anisotropic materials, Int J Solids Struct, 39, 5, 1405-1422, 2002 · Zbl 1039.74053
[42] García-Sánchez, F.; Sáez, A.; Domínguez, J., Two-dimensional time-harmonic BEM for cracked anisotropic solids, Eng Anal Bound Elem, 30, 2, 88-99, 2006 · Zbl 1195.74230
[43] García-Sánchez, F.; Zhang, C.; Sáez, A., A two-dimensional time-domain boundary element method for dynamic crack problems in anisotropic solids, Eng Fract Mech, 75, 6, 1412-1430, 2008
[44] Deb, A.; Banerjee, P. K., BEM for general anisotropic 2D elasticity using particular integrals, Commun Appl Numer Methods, 6, 2, 111-119, 1990 · Zbl 0693.73055
[45] Partridge, P. W.; Brebbia, C. A.; Wrobel, L. C., The dual reciprocity boundary element method, 2012, Springer Netherlands
[46] Chang, C. I., A closed-form solution for an orthotropic rotating disk, J Appl Mech, 41, 4, 1122-1123, 1974
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.