×

Hodge theory and deformations of affine cones of subcanonical projective varieties. (English) Zbl 1387.14022

The relation between Hodge theory of a smooth subcanonical \(n\)-dimensional projective variety \(X \subset \mathbb P_{\mathbb C}^N\) (i.e. \(\omega_X = \mathcal O_X(m)\) for some \(m\in \mathbb Z\)) and the deformation theory of the affine cone \(A_X\) over \(X\) is investigated. It is proved that there is a canonical isomorphism \[ (T_{A_X}^0)_m =H_{prim}^{n,0}(X) . \] If \(H^1(X,\mathcal O_X(k))=0\) for all \(k \in \mathbb Z\) then there is a canonical isomorphism \[ (T_{A_X}^1)_m =H_{prim}^{n-1,1}(X) . \] If also \(H^2(X,\mathcal O_X(k))=0\) for all \(k \in \mathbb Z\) then there is a canonical isomorphism \[ (T_{A_X}^2)_m =H_{prim}^{n-2,1}(X) . \] Moreover the whole primitive cohomology of \(X\) can be identified as a distinguished graded component of the Hochschild cohomology module of the punctured affine cone over \(X\). The results are used to compute Hodge numbers of smooth subcanonical projective varieties. The corresponding Singular code is given.

MSC:

14B07 Deformations of singularities
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
13D10 Deformations and infinitesimal methods in commutative ring theory
13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)

References:

[1] E.Arbarello and E.Sernesi, ‘Petri’s approach to the study of the ideal associated to a special divisor’, Invent. Math.49 (1978) 99-119. · Zbl 0399.14019
[2] M. F.Atiyah, ‘Complex analytic connections in fibre bundles’, Trans. Amer. Math. Soc.85 (1957) 181-207. · Zbl 0078.16002
[3] L.Bădescu, Projective geometry and formal geometry, Monografie Matematyczne 65 (Birkhäuser, Basel, 2012) XIV, 214.
[4] S. A.Barannikov, ‘Extended moduli spaces and mirror symmetry in dimensions \(n > 3\)’, PhD Thesis, University of California, Berkeley, CA, 1999.
[5] V.Batyrev, I.Ciocan‐Fontanine, B.Kim and D.VanStraten, ‘Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians’, Nuclear Phys. B.514 (1998) 640-666. · Zbl 0896.14025
[6] K.Behrend and B.Noohi, ‘Moduli of non‐commutative polarized schemes’, Preprint, 2015, arXiv:1507.07054. · Zbl 1397.14006
[7] Y.Bespalov, V.Lyubashenko and O.Manzyuk, Pretriangulated \(A_\infty \)‐categories, Pratsi Instytutu Matematyky Natsional’noï Akademiï Nauk Ukraïny, Matematyka ta ïï Zastosuvannya 76 (Kyïv: Instytut Matematyky NAN Ukraïny, 2008) 598. · Zbl 1199.18001
[8] I.Biswas and G.Schumacher, ‘On the stability of the tangent bundle of a hypersurface in a Fano variety’, J. Math. Kyoto Univ.45 (2005) 851-860. · Zbl 1097.14035
[9] G. E.Bredon, Sheaf theory, Graduate Text in Mathematics 170 (Springer, New York, 1967) XI, 504. · Zbl 0158.20505
[10] G.Brown, A. M.Kasprzyket al., ‘Graded ring database’, 2015, http://grdb.co.uk.
[11] A.Căldăraru, ‘The Mukai pairing. II. The Hochschild‐Kostant‐Rosenberg isomorphism’, Adv. Math.194 (2005) 34-66. · Zbl 1098.14011
[12] P.DePoi and F.Zucconi, ‘On subcanonical Gorenstein varieties and apolarity’, J. Lond. Math. Soc. (2) 87 (2013) 819-836. · Zbl 1276.14058
[13] O.Debarre, A.Iliev and L.Manivel, ‘On the period map for prime Fano threefolds of degree 10’, J. Algebraic Geom.21 (2012) 21-59. · Zbl 1250.14029
[14] W.Decker, G.‐M.Greuel, G.Pfister and H.Schönemann, ‘Singular 4‐0‐2 — a computer algebra system for polynomial computations’, 2015, http://www.singular.uni‐kl.de.
[15] M.Fiorentini and A.Lascu, ‘On the homogeneous ideal of a quasi‐complete intersection in the projective space’, Ann. Univ. Ferrara29 (1983) 211-219. · Zbl 0575.14042
[16] P.Griffiths, ‘Periods of integrals on algebraic manifolds, i, ii, iii’, Amer. J. Math.90 (1968) 805-865. · Zbl 0183.25501
[17] F.Hirzebruch, Topological methods in algebraic geometry (Springer, Berlin‐Heidelberg, 1978). · Zbl 0376.14001
[18] A.Kanazawa, ‘Pfaffian Calabi-Yau threefolds and mirror symmetry’, Commun. Number Theory Phys.6 (2012) 661-696. · Zbl 1274.14047
[19] S.Kebekus, T.Peternell, A. J.Sommese and J. A.Wiśniewski, ‘Projective contact manifolds’, Invent. Math.142 (2000) 1-15. · Zbl 0994.53024
[20] M.Kontsevich, ‘Homological algebra of mirror symmetry’, Proceedings of the International Congress of Mathematicians, vols. 1, 2, Zürich, 1994 (Birkhäuser, Basel, 1995) 120-139. · Zbl 0846.53021
[21] E. N.Materov, ‘The Bott formula for toric varieties’, Mosc. Math. J.2 (2002) 161-182, 200. · Zbl 1080.14540
[22] S.Mukai, ‘Curves and Grassmannians’, Algebraic geometry and related topics (Inchon, 1992), Conference Proceedings and Lecture Notes in Algebraic Geometry I (Int. Press, Cambridge, MA, 1993) 19-40. · Zbl 0846.14030
[23] M.Schlessinger, ‘Functors of Artin rings’, Trans. Amer. Math. Soc.130 (1968) 208-222. · Zbl 0167.49503
[24] M.Schlessinger, ‘On rigid singularities’, Rice Univ. Stud.19 (1973) 147-162. · Zbl 0279.32006
[25] M.Schlessinger and S.Lichtenbaum, ‘The cotangent complex of a morphism’, Trans. Amer. Math. Soc.128.1 (1967) 41-70. · Zbl 0156.27201
[26] F.Schuhmacher, ‘Hochschild cohomology of complex spaces and Noetherian schemes’, Homology Homotopy Appl.6.1 (2004) 299-340. · Zbl 1070.18010
[27] E.Sernesi, Deformation of algebraic schemes, Grundlehren der Mathematischen Wisschenschaften [Fundamental Principles of Mathematical Sciences] 334 (Springer, Berlin, 2006) xii+339. · Zbl 1102.14001
[28] C.Voisin, Hodge theory and complex algebraic geometry, II, Cambridge Studies in Advanced Mathematics 76 (Cambridge University Press, New York, 2002). · Zbl 1032.14001
[29] J.Wahl, ‘The Jacobian algebra of a graded Gorenstein singularity’, Duke Math. J.55 (1987) 843-871. · Zbl 0644.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.