×

Dynamically protected cat-qubits: a new paradigm for universal quantum computation. (English) Zbl 1451.81177

Summary: We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.

MSC:

81P68 Quantum computation
81P65 Quantum gates

References:

[1] Leghtas Z, Kirchmair G, Vlastakis B, Schoelkopf R J, Devoret M H and Mirrahimi M 2013 Hardware-efficient autonomous quantum memory protection Phys. Rev. Lett.111 120501 · doi:10.1103/PhysRevLett.111.120501
[2] Shor P 1995 Scheme for reducing decoherence in quantum memory Phys. Rev. A 52 2493-6 · doi:10.1103/PhysRevA.52.R2493
[3] Steane A 1996 Error correcting codes in quantum theory Phys. Rev. Lett.77 793-7 · Zbl 0944.81505 · doi:10.1103/PhysRevLett.77.793
[4] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) · Zbl 1049.81015
[5] Leghtas Z, Kirchmair G, Vlastakis B, Devoret M H, Schoelkopf R J and Mirrahimi M 2013 Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity Phys. Rev. A 87 042315 · doi:10.1103/physreva.87.042315
[6] Schuster D I et al 2007 Resolving photon number states in a superconducting circuit Nature445 515-8 · doi:10.1038/nature05461
[7] Carmichael H J and Wolinsky M 1988 Quantum noise in the parametric oscillator: from squeezed states to coherent-state superpositions Phys. Rev. Lett.60 1836-9 · doi:10.1103/PhysRevLett.60.1836
[8] Krippner L, Munro W J and Reid M D 1994 Transient macroscopic quantum superposition states in degenerate parametric oscillation: calculations in the large-quantum-noise limit using the positive P representation Phys. Rev. A 50 4330-8 · doi:10.1103/PhysRevA.50.4330
[9] Hach III E and Gerry C C 1994 Generation of mixtures of Schrödinger-cat states from a competitive two-photon process Phys. Rev. A 49 490-8 · doi:10.1103/PhysRevA.49.490
[10] Gilles L, Garraway B M and Knight P L 1994 Generation of nonclassical light by dissipative two-photon processes Phys. Rev. A 49 2785-99 · doi:10.1103/PhysRevA.49.2785
[11] Everitt M J, Spiller T P, Milburn G J, Wilson R D and Zagoskin A M 2012 Cool for cats arXiv:1212.4795
[12] Brooks P, Kitaev A and Preskill J 2013 Protected gates for superconducting qubits Phys. Rev. A 87 052306 · doi:10.1103/physreva.87.052306
[13] Kitaev A 2006 Protected qubit based on a superconducting current mirror arXiv:/0609441
[14] Gilchrist A, Nemoto K, Munro W J, Ralph T C, Glancy S, Braunstein S L and Milburn G J 2004 Schrödinger cats and their power for quantum information processing J. Opt. B: Quantum Semiclass. Opt.6 S828 · doi:10.1088/1464-4266/6/8/032
[15] Facchi P and Pascazio S 2002 Quantum Zeno subspaces Phys. Rev. Lett.89 080401 · Zbl 1267.81031 · doi:10.1103/PhysRevLett.89.080401
[16] Raimond J-M, Sayrin C, Gleyzes S, Dotsenko I, Brune M, Haroche S, Facchi P and Pascazio S 2010 Phase space tweezers for tailoring cavity fields by quantum Zeno dynamics Phys. Rev. Lett.105 213601 · doi:10.1103/PhysRevLett.105.213601
[17] Raimond J M, Facchi P, Peaudecerf B, Pascazio S, Sayrin C, Dotsenko I, Gleyzes S, Brune M and Haroche S 2012 Quantum Zeno dynamics of a field in a cavity Phys. Rev. A 86 032120 · doi:10.1103/PhysRevA.86.032120
[18] Lidar D A, Chuang I L and Whaley K B 1998 Decoherence-free subspaces for quantum computation Phys. Rev. Lett.81 2594-7 · doi:10.1103/PhysRevLett.81.2594
[19] Yurke B and Stoler D 1986 Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion Phys. Rev. Lett.57 13-16 · doi:10.1103/PhysRevLett.57.13
[20] Kirchmair G, Vlastakis B, Leghtas Z, Nigg S E, Paik H, Ginossar E, Mirrahimi M, Frunzio L, Girvin S M and Schoelkopf R J 2013 Observation of quantum state collapse and revival due to the single-photon Kerr effect Nature495 205 · doi:10.1038/nature11902
[21] Kumar S and DiVincenzo D P 2010 Exploiting Kerr cross nonlinearity in circuit quantum electrodynamics for nondemolition measurements Phys. Rev. B 82 014512 · doi:10.1103/PhysRevB.82.014512
[22] Vlastakis B, Kirchmair G, Leghtas Z, Nigg S E, Frunzio L, Girvin S M, Mirrahimi M, Devoret M H and Schoelkopf R J 2013 Deterministically encoding quantum information using 100-photon Schrödinger cat states Science342 607-10 · Zbl 1355.81054 · doi:10.1126/science.1243289
[23] Haroche S and Raimond J M 2006 Exploring the Quantum: Atoms, Cavities and Photons (Oxford: Oxford University Press) · Zbl 1264.81004 · doi:10.1093/acprof:oso/9780198509141.001.0001
[24] Haroche S, Brune M and M Raimond J 2007 Measuring the photon number parity in a cavity: from light quantum jumps to the tomography of non-classical field states J. Mod. Opt.54 2101 · doi:10.1080/09500340701391118
[25] Sun L et al 2013 Tracking photon jumps with repeated quantum non-demolition parity measurements submitted arXiv:1311.2534
[26] Herviou L and Mirrahimi M 2013 Fault-tolerant photon number parity measurement for a quantum harmonic oscillator, in preparation
[27] Gottesman D 2010 An introduction to quantum error correction and fault-tolerant quantum computation (Providence, RI: American Mathematical Society) 13-56 Quantum Information Science and Its Contributions to Mathematics: Proc. Symp. in Applied Mathematics vol 68 (arXiv:0904.2557) · Zbl 1211.81043
[28] Vijay R, Devoret M H and Siddiqi I 2009 Invited review article: The Josephson bifurcation amplifier Rev. Sci. Instrum.80 111101 · doi:10.1063/1.3224703
[29] Nigg S E, Paik H, Vlastakis B, Kirchmair G, Shankar S, Frunzio L, Devoret M H, Schoelkopf R J and Girvin S M 2012 Black-box superconducting circuit quantization Phys. Rev. Lett.108 240502 · doi:10.1103/PhysRevLett.108.240502
[30] Drummond P D, McNeil K J and Walls D F 1981 Non-equilibrium transitions in sub/second harmonic generation II. Quantum theory Opt. Acta28 211-25 · doi:10.1080/713820531
[31] Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M and Devoret M H 2010 Analog information processing at the quantum limit with a Josephson ring modulator Nat. Phys.6 296-302 · doi:10.1038/nphys1516
[32] Roch N, Flurin E, Nguyen F, Morfin P, Campagne-Ibarcq P, Devoret M H and Huard B 2012 Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit Phys. Rev. Lett.108 147701 · doi:10.1103/PhysRevLett.108.147701
[33] Schackert F 2013 A practical quantum-limited parametric amplifier based on the Josephson ring modulator PhD Thesis Yale University
[34] Albert V V and Jiang L 2014 Symmetries and conserved quantities in Lindblad master equations Phys. Rev.89 022118 · doi:10.1103/physreva.89.022118
[35] Simaan H D and Loudon R 1975 Off-diagonal density matrix for single-beam two-photon absorbed light J. Phys. A: Math. Gen.8 539 · doi:10.1088/0305-4470/8/4/016
[36] Prudnikov A P, Brychkov Y A and Marichev O I 1992 Integrals and Series Vol 2: Special Functions 1st edn (London: Gordon and Breach) · Zbl 0781.44002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.