×

General phase spaces: from discrete variables to rotor and continuum limits. (English) Zbl 1383.81119

Summary: We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum phase spaces, explaining how the latter two can be understood as limiting cases of the first. We extend the limit-taking procedures used to travel between phase spaces to a general class of Hamiltonians (including many local stabilizer codes) and provide six examples: the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The procedures also yield rotor versions of all models, five of which are novel many-body extensions of the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors, with the toric code case related to \(U(1)\) lattice gauge theory.

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
81V80 Quantum optics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
82D80 Statistical mechanics of nanostructures and nanoparticles

References:

[1] Auerbach A 1994 Interacting Electrons and Quantum Magnetism (New York: Springer) · doi:10.1007/978-1-4612-0869-3
[2] Vourdas A 2017 Finite and Profinite Quantum Systems, Quantum Science and Technology (Berlin: Springer) · Zbl 1379.81004 · doi:10.1007/978-3-319-59495-8
[3] Werner R F 2016 Uncertainty relations for general phase spaces Frontiers Phys.11 110305 · doi:10.1007/s11467-016-0558-5
[4] Lenz R 1990 Group Theoretical Methods in Image Processing(Lecture Notes in Computer Science vol 413) (Berlin: Springer) p 75 · doi:10.1007/3-540-52290-5_5
[5] Cotfas N and Dragoman D 2012 Properties of finite Gaussians and the discrete-continuous transition J. Phys. A: Math. Theor.45 425305 · Zbl 1257.81020 · doi:10.1088/1751-8113/45/42/425305
[6] Gilmore R 1974 Lie Groups, Lie Algebras, and Some of Their Applications (New York: Dover) p 428 · Zbl 0279.22001
[7] Klein A and Marshalek E R 1991 Boson realizations of Lie algebras with applications to nuclear physics Rev. Mod. Phys.63 375 · doi:10.1103/RevModPhys.63.375
[8] Durt T, Englert B-G, Bengtsson I and Zyczkowski K 2010 On mutually unbiased bases Int. J. Quantum Inf.08 535 · Zbl 1208.81052 · doi:10.1142/S0219749910006502
[9] Sylvester J J 1909 The Collected Mathematics Papers of James Joseph Sylvester (Cambridge: Cambridge University Press)
[10] von Neumann J 1931 Die eindeutigkeit der Schrödingerschen operatoren Math. Ann.104 570 · Zbl 0001.24703 · doi:10.1007/BF01457956
[11] Weyl H 1950 The Theory of Groups and Quantum Mechanics 2nd edn (New York: Dover) p 272
[12] Schwinger J 2000 Quantum Kinematics and Dynamics (Boulder: Westview Press)
[13] Gottesman D, Kitaev A Y and Preskill J 2001 Encoding a qubit in an oscillator Phys. Rev. A 64 012310 · doi:10.1103/PhysRevA.64.012310
[14] Pittenger A and Rubin M H 2004 Mutually unbiased bases, generalized spin matrices and separability Linear Algebr. Appl.390 255 · Zbl 1060.15015 · doi:10.1016/j.laa.2004.04.025
[15] Kibler M R 2009 An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group J. Phys. A: Math. Theor.42 353001 · Zbl 1176.81015 · doi:10.1088/1751-8113/42/35/353001
[16] Sachse C 2006 Sylvester-’t Hooft generators and relations between them for sl(n) and gl(n|n) Theor. Math. Phys.149 1299 · Zbl 1177.81055 · doi:10.1007/s11232-006-0119-0
[17] Landi G, Lizzi F and Szabo R J 2001 From large N matrices to the noncommutative torus Commun. Math. Phys.217 181 · Zbl 0982.58004 · doi:10.1007/s002200000356
[18] Hall B C 2013 Quantum Theory for Mathematicians(Graduate Texts in Mathematics vol 267) (New York: Springer) · Zbl 1273.81001 · doi:10.1007/978-1-4614-7116-5
[19] Galetti D and Marchiolli M 1996 Discrete coherent states and probability distributions in finite-dimensional spaces Ann. Phys.249 454 · Zbl 0895.47053 · doi:10.1006/aphy.1996.0079
[20] Ruzzi M, Marchiolli M A and Galetti D 2005 Extended Cahill-Glauber formalism for finite-dimensional spaces: I. Fundamentals J. Phys. A: Math. Gen.38 6239 · Zbl 1084.81053 · doi:10.1088/0305-4470/38/27/010
[21] Marchiolli M A, Ruzzi M and Galetti D 2007 Discrete squeezed states for finite-dimensional spaces Phys. Rev. A 76 032102 · doi:10.1103/PhysRevA.76.032102
[22] Ketkar A, Klappenecker A, Kumar S and Sarvepalli P 2006 Nonbinary Stabilizer Codes Over Finite Fields IEEE Trans. Inf. Theory52 4892 · Zbl 1242.94045 · doi:10.1109/TIT.2006.883612
[23] Galetti D and de Toledo Piza A 1988 An extended Weyl-Wigner transformation for special finite spaces Physica A 149 267 · doi:10.1016/0378-4371(88)90219-1
[24] Ruzzi M and Galetti D 2000 Quantum discrete phase space dynamics and its continuous limit J. Phys. A: Math. Gen.33 1065 · Zbl 0977.81051 · doi:10.1088/0305-4470/33/5/317
[25] Gibbons K S, Hoffman M J and Wootters W K 2004 Discrete phase space based on finite fields Phys. Rev. A 70 062101 · Zbl 1227.81218 · doi:10.1103/PhysRevA.70.062101
[26] Marchiolli M A, Ruzzi M and Galetti D 2005 Extended Cahill-Glauber formalism for finite-dimensional spaces. II. Applications in quantum tomography and quantum teleportation Phys. Rev. A 72 042308 · Zbl 1084.81053 · doi:10.1103/PhysRevA.72.042308
[27] Ferrie C 2011 Quasi-probability representations of quantum theory with applications to quantum information science Rep. Prog. Phys.74 116001 · doi:10.1088/0034-4885/74/11/116001
[28] Marchiolli M and Ruzzi M 2012 Theoretical formulation of finite-dimensional discrete phase spaces: I. Algebraic structures and uncertainty principles Ann. Phys.327 1538 · Zbl 1261.81084 · doi:10.1016/j.aop.2012.02.015
[29] Tilma T, Everitt M J, Samson J H, Munro W J and Nemoto K 2016 Wigner functions for arbitrary quantum systems Phys. Rev. Lett.117 180401 · doi:10.1103/PhysRevLett.117.180401
[30] Ligabò M 2016 Torus as phase space: Weyl quantization, dequantization, and Wigner formalism J. Math. Phys.57 082110 · Zbl 1351.81066 · doi:10.1063/1.4961325
[31] Miranowicz A and Imoto N 2001 Modern Nonlinear optics, Part (New York: Wiley) p 195
[32] de la Torre A C and Goyeneche D 2003 Quantum mechanics in finite-dimensional Hilbert space Am. J. Phys.71 49 · Zbl 1219.81003 · doi:10.1119/1.1514208
[33] Bengtsson I and Zyczkowski K 2017 On discrete structures in finite Hilbert spaces (arXiv:1701.07902)
[34] Schiff L I 1968 Quantum Mechanics (New York: McGraw-Hill)
[35] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer) · Zbl 1041.81108 · doi:10.1007/978-3-540-44953-9
[36] Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Atomic coherent states in quantum optics Phys. Rev. A 6 2211 · doi:10.1103/PhysRevA.6.2211
[37] Atakishiyev N M, Pogosyan G S and Wolf K B 2003 Contraction of the finite one-dimensional oscillator Int. J. Mod. Phys. A 18 317 · Zbl 1039.81029 · doi:10.1142/S0217751X03013776
[38] Wolf K B 1979 Integral Transforms in Science and Engineering (New York: Plenum Press) · Zbl 0409.44001 · doi:10.1007/978-1-4757-0872-1
[39] Kowalski K, Rembielinski J and Papaloucas L C 1996 Coherent states for a quantum particle on a circle J. Phys. A: Math. Gen.29 4149 · Zbl 0904.46054 · doi:10.1088/0305-4470/29/14/034
[40] Berry M V 1977 Semi-classical mechanics in phase space: a study of Wigner’s function Phil. T. R. Soc. A 287 · Zbl 0421.70020 · doi:10.1098/rsta.1977.0145
[41] Mukunda N 1979 Wigner distribution for angle coordinates in quantum mechanics Am. J. Phys.47 182 · doi:10.1119/1.11869
[42] Zhang S and Vourdas A 2003 Phase space methods for particles on a circle J. Math. Phys.44 5084 · Zbl 1062.81102 · doi:10.1063/1.1616997
[43] Ruzzi M, Marchiolli M A, da Silva E C and Galetti D 2006 Quasiprobability distribution functions for periodic phase spaces: I. Theoretical aspects J. Phys. A: Math. Gen.39 9881 · Zbl 1102.81055 · doi:10.1088/0305-4470/39/31/016
[44] Raynal P, Kalev A, Suzuki J and Englert B-G 2010 Encoding many qubits in a rotor Phys. Rev. A 81 052327 · doi:10.1103/PhysRevA.81.052327
[45] Wen X-g 2004 Quantum Field Theory of Many-Body Systems (Oxford: Oxford University Press)
[46] Ashcroft N W and Mermin N D 1976 Solid State Physics 1st edn (Fort Worth: Harcourt College Publishers)
[47] Girvin S M 2015 Quantum Machines: Measurement, Control of Engineered Quantum Systems ed M H Devoret et al (Oxford: Oxford University Press) ch 3
[48] Devoret M H 1997 Quantum fluctuations ed S Reynaud et al (Amsterdam: Elsevier) ch 10
[49] Ruzzi M 2002 Schwinger, Pegg and Barnett approaches and a relationship between angular and Cartesian quantum descriptions J. Phys. A: Math. Gen.35 1763 · Zbl 1033.81041 · doi:10.1088/0305-4470/35/7/320
[50] Ruzzi M and Galetti D 2002 Schwinger and Pegg-Barnett approaches and a relationship between angular and Cartesian quantum descriptions: II. Phase spaces J. Phys. A: Math. Gen.35 4633 · Zbl 1052.81044 · doi:10.1088/0305-4470/35/21/311
[51] Haroche S and Raimond J-M 2006 Exploring the Quantum: Atoms, Cavities, and Photons (Oxford: Oxford University Press) · Zbl 1264.81004 · doi:10.1093/acprof:oso/9780198509141.001.0001
[52] Garrison J C and Wong J 1970 Canonically conjugate pairs, uncertainty relations, and phase operators J. Math. Phys.11 2242 · Zbl 0196.28003 · doi:10.1063/1.1665388
[53] Lynch R 1995 The quantum phase problem: a critical review Phys. Rep.256 367 · doi:10.1016/0370-1573(94)00095-K
[54] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley) · Zbl 0961.81136 · doi:10.1002/3527602976
[55] Azbel M Y 1964 Energy spectrum of a conduction electron in a magnetic field J. Exp. Theor. Phys.19 634
[56] Hofstadter D 1976 Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields Phys. Rev. B 14 2239 · doi:10.1103/PhysRevB.14.2239
[57] Avila A and Jitomirskaya S 2009 The ten martini problem Ann. Math.170 303 · Zbl 1166.47031 · doi:10.4007/annals.2009.170.303
[58] Baxter R 1989 A simple solvable ZN Hamiltonian Phys. Lett. A 140 155 · doi:10.1016/0375-9601(89)90884-0
[59] Rabi I I 1936 On the process of space quantization Phys. Rev.49 324 · Zbl 0013.37401 · doi:10.1103/PhysRev.49.324
[60] Rabi I I 1937 Space quantization in a gyrating magnetic field Phys. Rev.51 652 · JFM 64.1483.04 · doi:10.1103/PhysRev.51.652
[61] Albert V V 2012 Quantum Rabi model for N-state atoms Phys. Rev. Lett.108 180401 · doi:10.1103/PhysRevLett.108.180401
[62] Kitaev A Y 2003 Fault-tolerant quantum computation by anyons Ann. Phys.303 2 · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[63] Wen X-G 2003 Quantum orders in an exact soluble model Phys. Rev. Lett.90 016803 · doi:10.1103/PhysRevLett.90.016803
[64] Bullock S S and Brennen G K 2007 Qudit surface codes and gauge theory with finite cyclic groups J. Phys. A: Math. Theor.40 3481 · Zbl 1114.81020 · doi:10.1088/1751-8113/40/13/013
[65] Zhang J, Xie C, Peng K and van Loock P 2008 Anyon statistics with continuous variables Phys. Rev. A 78 052121 · doi:10.1103/PhysRevA.78.052121
[66] Haah J 2011 Local stabilizer codes in three dimensions without string logical operators Phys. Rev. A 83 042330 · doi:10.1103/PhysRevA.83.042330
[67] Kitaev A Y 2006 Anyons in an exactly solved model and beyond Ann. Phys.321 2 · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[68] Barkeshli M, Jiang H-C, Thomale R and Qi X-L 2015 Generalized Kitaev models and extrinsic non-Abelian twist defects Phys. Rev. Lett.114 026401 · doi:10.1103/PhysRevLett.114.026401
[69] Fendley P 2012 Parafermionic edge zero modes in Z n -invariant spin chains J. Stat. Mech. P11020 · Zbl 1456.82125 · doi:10.1088/1742-5468/2012/11/P11020
[70] Barker L 2001 Continuum quantum systems as limits of discrete quantum systems, I: state vectors J. Funct. Anal.186 153 · Zbl 0989.81053 · doi:10.1006/jfan.2001.3788
[71] Barker L 2001 Continuum quantum systems as limits of discrete quantum systems: II. State functions J. Phys. A: Math. Gen.34 4673 · Zbl 0990.81051 · doi:10.1088/0305-4470/34/22/308
[72] Barker L 2001 Continuum quantum systems as limits of discrete quantum systems. III. Operators J. Math. Phys.42 4653 · Zbl 1018.81030 · doi:10.1063/1.1398582
[73] Barker L 2003 Continuum quantum systems as limits of discrete quantum systems. IV. Affine canonical transforms J. Math. Phys.44 1535 · Zbl 1062.22023 · doi:10.1063/1.1557331
[74] Digernes T, Varadarajan V S and Varadhan S R S 1994 Finite approximations to quantum systems Rev. Math. Phys.06 621 · Zbl 0855.47046 · doi:10.1142/S0129055X94000213
[75] Massar S and Spindel P 2008 Uncertainty relation for the discrete Fourier transform Phys. Rev. Lett.100 190401 · Zbl 1228.81192 · doi:10.1103/PhysRevLett.100.190401
[76] Barker L, Candanu C, Hakioglu T, Kutay M A and Ozaktas H M 2000 The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform J. Phys. A: Math. Gen.33 2209 · Zbl 0991.39007 · doi:10.1088/0305-4470/33/11/304
[77] Barker L 2000 The discrete fractional Fourier transform and Harper’s equation Mathematika47 281 · Zbl 1030.42006 · doi:10.1112/S0025579300015898
[78] Wang Y, Pannetier B and Rammal R 1987 Quasiclassical approximations for almost-Mathieu equations J. Phys., Paris48 2067 · doi:10.1051/jphys:0198700480120206700
[79] Kraus Y E and Zilbergerg O 2012 Phys. Rev. Lett.109 116404 · doi:10.1103/PhysRevLett.109.116404
[80] Fendley P 2014 Free parafermions J. Phys. A: Math. Theor.47 075001 · Zbl 1291.82022 · doi:10.1088/1751-8113/47/7/075001
[81] Alcaraz F C, Batchelor M T and Liu Z-Z 2017 Energy spectrum and critical exponents of the free parafermion Z N spin chain J. Phys. A: Math. Theor.50 16LT03 · Zbl 1369.82003 · doi:10.1088/1751-8121/aa645a
[82] Sólyom J and Pfeuty P 1981 Renormalization-group study of the Hamiltonian version of the Potts model Phys. Rev. B 24 218 · doi:10.1103/PhysRevB.24.218
[83] Cant A and Pearce P A 1983 Mean-field limits of the quantum Potts model Commun. Math. Phys.90 373 · Zbl 0528.46059 · doi:10.1007/BF01206888
[84] Vaezi A and Kim E-A 2013 UV-IR transmutation for hybrid realizations of Zk parafermion systems (arXiv:1310.7434)
[85] Moran N, Pellegrino D, Slingerland J K and Kells G 2017 Parafermionic clock models and quantum resonance Phys. Rev. B 95 235127 · doi:10.1103/PhysRevB.95.235127
[86] Peskin M E 1978 Mandelstam-’t Hooft duality in abelian lattice models Ann. Phys.113 122 · doi:10.1016/0003-4916(78)90252-X
[87] Capriotti L, Cuccoli A, Fubini A, Tognetti V and Vaia R 2004 Fundamental Problems of Mesoscopic Physics (Dordrecht: Kluwer) pp 203-16 · doi:10.1007/1-4020-2193-3_12
[88] Jaynes E T and Cummings F W 1963 Comparison of quantum and semiclassical radiation theories with application to the beam maser Proc. IEEE51 89 · doi:10.1109/PROC.1963.1664
[89] Paul H 1963 Induzierte emission bei starker Einstrahlung Ann. Phys.466 411 · doi:10.1002/andp.19634660710
[90] Shore B W and Knight P L 1993 The Jaynes-Cummings model J. Mod. Opt.40 1195 · Zbl 0942.81636 · doi:10.1080/09500349314551321
[91] Lewenstein M, Kubasiak A, Larson J, Menotti C, Morigi G, Osterloh K and Sanpera A 2006 AIP Conf. Proc.869 201-11 · doi:10.1063/1.2400650
[92] Tomka M, Pletyukhov M and Gritsev V 2015 Supersymmetry in quantum optics and in spin – orbit coupled systems Sci. Rep.5 13097 · doi:10.1038/srep13097
[93] Bernevig B A and Zhang S-C 2006 Quantum spin Hall effect Phys. Rev. Lett.96 106802 · doi:10.1103/PhysRevLett.96.106802
[94] Deutsch I H, Alsing P M, Grondalski J, Ghose S, Haycock D L and Jessen P S 2000 Quantum transport in magneto-optical double-potential wells J. Opt. B: Quantum Semiclass. Opt.2 633 · doi:10.1088/1464-4266/2/5/311
[95] Shore H B and Sander L M 1973 Ground state of the exciton – phonon syste Phys. Rev. B 7 4537 · doi:10.1103/PhysRevB.7.4537
[96] Herfort U and Wagner M 2001 Quantum dynamics of the prototype polaron model J. Phys.: Condens. Matter13 3297 · doi:10.1088/0953-8984/13/14/306
[97] Rabl P, Cappellaro P, Dutt M, Jiang L, Maze J and Lukin M D 2009 Strong magnetic coupling between an electronic spin qubit and a mechanical resonator Phys. Rev. B 79 041302 · doi:10.1103/PhysRevB.79.041302
[98] MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A and Fuchs G D 2013 Mechanical spin control of Nitrogen-vacancy centers in diamond Phys. Rev. Lett.111 227602 · doi:10.1103/PhysRevLett.111.227602
[99] Zhang Y-Z 2014 Symmetric chiral Rabi model: a new -level system Ann. Phys.347 122 · Zbl 1342.81168 · doi:10.1016/j.aop.2014.05.003
[100] Ghose S, Alsing P M, Sanders B C and Deutsch I H 2005 Entanglement and the quantum-to-classical transition Phys. Rev. A 72 014102 · doi:10.1103/PhysRevA.72.014102
[101] Bakemeier L, Alvermann A and Fehske H 2012 Quantum phase transition in the Dicke model with critical and noncritical entanglement Phys. Rev. A 85 043821 · doi:10.1103/PhysRevA.85.043821
[102] Gilmore R 1993 Catastrophe Theory for Scientists and Engineers (New York: Dover)
[103] Viyuela O, Rivas A and Martin-Delgado M A 2012 Generalized toric codes coupled to thermal baths New J. Phys.14 033044 · Zbl 1448.81508 · doi:10.1088/1367-2630/14/3/033044
[104] Demarie T F, Linjordet T, Menicucci N C and Brennen G K 2014 Detecting topological entanglement entropy in a lattice of quantum harmonic oscillators New J. Phys.16 085011 · Zbl 1451.81093 · doi:10.1088/1367-2630/16/8/085011
[105] Vijay S, Haah J and Fu L 2016 Fracton topological order, generalized lattice gauge theory, and duality Phys. Rev. B 94 235157 · doi:10.1103/PhysRevB.94.235157
[106] Haah J 2017 Frontiers of quantum information physics (Santa Barbara, CA: KITP, UCSB) (http://online.kitp.ucsb.edu/online/qinfo_c17/haah/)
[107] Vaezi A 2014 Z3 generalization of the Kitaev’s spin-1/2 model Phys. Rev. B 90 075106 · doi:10.1103/PhysRevB.90.075106
[108] Braak D 2011 Integrability of the Rabi model Phys. Rev. Lett.107 100401 · doi:10.1103/PhysRevLett.107.100401
[109] Amico L, Osterloh A and Cataliotti F 2005 Quantum many particle systems in ring-shaped optical lattices Phys. Rev. Lett.95 063201 · doi:10.1103/PhysRevLett.95.063201
[110] Noguchi A, Shikano Y, Toyoda K and Urabe S 2014 Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap Nat. Commun.5 3868 · doi:10.1038/ncomms4868
[111] Tabakov B, Benito F, Blain M, Clark C R, Clark S, Haltli R A, Maunz P, Sterk J D, Tigges C and Stick D 2015 Assembling a ring-shaped crystal in a microfabricated surface ion trap Phys. Rev. Appl.4 031001 · doi:10.1103/PhysRevApplied.4.031001
[112] Li H-K et al 2017 Realization of translational symmetry in trapped cold ion rings Phys. Rev. Lett.118 053001 · doi:10.1103/PhysRevLett.118.053001
[113] Notarnicola S, Ercolessi E, Facchi P, Marmo G, Pascazio S and Pepe F V 2015 Discrete Abelian gauge theories for quantum simulations of QED J. Phys. A: Math. Theor.48 30FT01 · Zbl 1325.81123 · doi:10.1088/1751-8113/48/30/30FT01
[114] Lvovsky A I, Sanders B C and Tittel W 2009 Optical quantum memory Nat. Photon.3 706 · doi:10.1038/nphoton.2009.231
[115] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D and Laurat J 2014 A quantum memory for orbital angular momentum photonic qubits Nat. Photon.8 234 · doi:10.1038/nphoton.2013.355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.