×

Cost analysis and optimization of machine repair model with working vacation and feedback-policy. (English) Zbl 1484.90027

Summary: This paper is dedicated to the study of a machining system with standby provisioning, feedback and working vacation policy of the server. The failed machines are permitted by the server in the system according to the FCFS discipline. If no failed machines are found by server, it goes on vacation. But instead of stopping the service altogether, it still operates on a slow service and this process is said to be server’s working vacation. When all the standby units are in use, failure of units occur in a degraded mode. The concept of feedback policy is also considered wherein customer (machine) getting service is unsatisfied with the services and wishes to rejoin the system as a feedback customer (machine) or leaves the system. Customer who wishes to provide feedback (unsatisfied customer) can join the queue at the back. The Markov process concept is utilized to present the differential-difference equations of the queuing model. The failure and repair rate of units in machining system is exponentially distributed. Various performance characteristics have been derived. Cost optimization function is evolved for getting the optimal operating conditions. The well-known meta-heuristic technique, particle swarm optimization (PSO) is implemented for obtaining the ideal operating conditions at minimum estimated cost including economic performance. Lastly, numerical results are described related to the studied model through tables and graphs.

MSC:

90B22 Queues and service in operations research
60K25 Queueing theory (aspects of probability theory)
90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI

References:

[1] Ayyappan, G.; Ganapathi, AM; Sekar, G., \(M/M/1\) retrial queueing system with loss and feedback under preemptive priority service, Int. J. Comput. Appl., 2, 6, 27-34 (2010) · Zbl 1220.60051
[2] Baba, Y., Analysis of a \(GI/M/1\) queue with multiple working vacations, Oper. Res. Lett., 33, 2, 201-209 (2005) · Zbl 1099.90013 · doi:10.1016/j.orl.2004.05.006
[3] Boxma, O.J., Yechiali, U.: An \(M/G/1\) queue with multiple types of feedback and gated vacations. J. Appl. Prob. 773-784 (1997) · Zbl 0898.60089
[4] Chan, WC, A computer processing queueing system with feedback, Inf. Control, 16, 5, 473-486 (1970) · Zbl 0289.60051 · doi:10.1016/S0019-9958(70)90244-5
[5] Chang, FM; Liu, TH; Ke, JC, On an unreliable-server retrial queue with customer feedback and impatience, Appl. Math. Model, 55, 171-182 (2018) · Zbl 1480.90099 · doi:10.1016/j.apm.2017.10.025
[6] Choi, BD; Kim, YC; Lee, YW, The \(M/M/C\) retrial queue with geometric loss and feedback, Comput. Math. Appl., 36, 41-52 (1998) · Zbl 0947.90024 · doi:10.1016/S0898-1221(98)00160-6
[7] Disney, RL; McNickle, DC; Simon, B., The \(M/G/1\) queue with instantaneous Bernoulli feedback, Naval Res. Logistic., 27, 635644 (1980) · Zbl 0448.60067 · doi:10.1002/nav.3800270411
[8] Doshi, B., Single server queues with vacations: a survey, Que. Syst., 1, 1, 29-66 (1986) · Zbl 0655.60089 · doi:10.1007/BF01149327
[9] DaAvignon, G.; Disney, R., Single-server queues with state-dependent feedback, INFOR Inf. Syst. Oper. Res., 14, 1, 71-85 (1976) · Zbl 0333.60091
[10] Fontana, B.: Stationary queue-length distribution in an \(M/G/1\) queue with two non-preemptive priorities and general feedback. Performance of Computer-Communication Systems (1984)
[11] Grey, WJ; Wang, PP; Scott, M., A vacation queueing model with service breakdowns, Appl. Math. Model., 24, 5-6, 391-400 (2000) · Zbl 0966.90024 · doi:10.1016/S0307-904X(99)00048-7
[12] Gao, S.; Liu, Z., An \(M/G/1\) queue with single working vacation and vacation interruption under bernoulli schedule, Appl. Math. Model., 37, 3, 1564-1579 (2013) · Zbl 1351.90076 · doi:10.1016/j.apm.2012.04.045
[13] Jain, M.; Shekhar, C.; Shukla, S., Vacation queueing model for machining system with two unreliable repairmen, Int. J. Oper. Res., 20, 4, 469-491 (2014) · Zbl 1362.90138 · doi:10.1504/IJOR.2014.063154
[14] Jain, M.; Meena, RK, Markovian analysis of unreliable multi-components redundant fault tolerant system with working vacation and \(F\)-policy, Int. J. Oper. Res. Cogent Math., 4, 1-17 (2017) · Zbl 1426.90087
[15] Jain, M.; Meena, RK; Kumar, P., Maintainability of redundant machining system with vacation, imperfect recovery and reboot delay, Arab. J. Sci. Eng., 45, 2145-2161 (2019) · doi:10.1007/s13369-019-04060-w
[16] Jain, M., Rani, S., Singh, M.: Transient analysis of Markov feedback queue with working vacation and discouragement. In: Deep, K., Jain, M., Salhi, S. (eds.) Performance Prediction and Analytics of Fuzzy, Reliability and Queuing Models, 235-250 (2019)
[17] Jain, M.; Shekhar, C.; Shukla, S., Queueing analysis of machine repair problem with controlled rates and working vacation Under \(F\)-policy. Proceedings of National Academy of Science, India, Sect. A Phys. Sci., 86, 21-31 (2016)
[18] Jain, M.; Shekhar, C.; Meena, RK, Admission control policy of maintenance for unreliable server machining system with working vacation, Arab. J. Sci. Eng., 42, 7, 2993-3005 (2017) · Zbl 1390.90283 · doi:10.1007/s13369-017-2488-0
[19] Jain, M., Singh, M.: Transient analysis of a Markov queueing model with feedback, discouragement and disaster. Int. J. Appl. Comput. Math 6(31), (2020) doi:10.1007/s40819-020-0777-x · Zbl 1456.60241
[20] Jain, M.; Sharma, GC; Baghel, KPS, \(N\)-policy for \(M/G/1\) machine repair model with mixed standby components, degraded failure and bernoulli feedback, Int. J. Eng., 17, 3, 279-288 (2004) · Zbl 1101.90018
[21] Jain, M.; Sharma, R.; Meena, RK, Performance modeling of fault-tolerant machining system with working vacation and working breakdown, Arab. J. Sci. Eng., 44, 3, 1-12 (2018)
[22] Jharotia, P.; Sharma, DC, Machine repair problem with spare and three repairmen with partial server vacation policy, Int. J. Eng. Manag. Sci., 2, 3, 44-49 (2015)
[23] Ke, JC; Chang, FM, Modified vacation policy for \(M/G/1\) retrial queue with balking and feedback, Comput. Ind. Eng., 57, 1, 433-443 (2009) · doi:10.1016/j.cie.2009.01.002
[24] Kumar, BK; Vijayalakshmi, G.; Krishnamoorthy, A.; Basha, SS, A single server feedback retrial queue with collisions, Comput. Oper. Res., 37, 7, 1247-1255 (2010) · Zbl 1178.90100 · doi:10.1016/j.cor.2009.04.019
[25] Kumar, BK; Madheswari, SP; Vijayakumar, A., The \(M/G/1\) retrial queue with feedback and starting failures, Appl. Math. Model, 26, 1057-1075 (2002) · Zbl 1018.60088 · doi:10.1016/S0307-904X(02)00061-6
[26] Li, J.; Tian, N., The \(M/M/1\) queue with working vacations and vacation interruptions, J. Syst. Sci. Syst. Eng., 16, 1, 121-127 (2007) · doi:10.1007/s11518-006-5030-6
[27] Lin, CH; Ke, JC, Multi-server system with single working vacation, Appl. Math. Model., 33, 7, 2967-2977 (2009) · Zbl 1187.60077 · doi:10.1016/j.apm.2008.10.006
[28] Li, JH; Tian, NS; Ma, ZY, Performance analysis of \(GI/M/1\) queue with working vacations and vacation interruption, Appl. Math. Model., 32, 12, 2715-2730 (2008) · Zbl 1167.90451 · doi:10.1016/j.apm.2007.09.017
[29] Melikov, AZ; Ponomarenko, LA; Kuliyeva, KN, Numerical analysis of a queueing system with feedback, Cybernet. Syst. Anal., 51, 4, 566-573 (2015) · Zbl 1326.90016 · doi:10.1007/s10559-015-9747-4
[30] Ma, Q.; Zhao, YQ; Liu, W.; Li, J., Customer strategic joining behavior in Markovian queues with working vacations and vacation interruptions under bernoulli schedule, Asia-Pacific J. Oper. Res., 36, 1, 1950003 (2019) · Zbl 1412.90034 · doi:10.1142/S0217595919500039
[31] Medhi, J.: Response time in an \(M/G/1\) queueing system with bernoulli feedback. Recent Develop. Oper. Res. 249-259 (2001)
[32] Rajadurai, P.; Saravanarajan, MC; Chandrasekaran, VM, A study on \(M/G/1\) feedback retrial queue with subject to server breakdown and repair under multiple working vacation policy, Alexandria Eng. J., 57, 2, 947-962 (2018) · doi:10.1016/j.aej.2017.01.002
[33] Sethi, R., Bhagat, A.: Performance analysis of machine repair problem with working vacation and service interruptions. In: AIP Conference Proceedings 1—8 (2019)
[34] Sethi, R., Jain, M., Meena, R.K., et al.: Cost optimization and ANFIS computing of an unreliable \(M/M/1\) queueing system with customers’ impatience under \(N\)-Policy. Int. J. Appl. Comput. Math 6(51) (2020) doi:10.1007/s40819-020-0802-0 · Zbl 1440.90007
[35] Shekhar, C.; Deora, P.; Varshney, S.; Singh, KP; Sharma, DC, Optimal profit analysis of machine repair problem with repair in phases and organizational delay, Int. J. Math. Eng. Manag. Sci., 6, 1, 442-468 (2021)
[36] Shi, Y., Eberhart, A.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, USA 69-73 (1998)
[37] Servi, LD; Finn, SG, \(M/M/1\) queues with working vacations, Perform. Evaluation, 50, 1, 41-52 (2002) · doi:10.1016/S0166-5316(02)00057-3
[38] Takacs, L., A single-server queue with feedback, Bell Syst. Tech. J., 42, 2, 505-519 (1963) · doi:10.1002/j.1538-7305.1963.tb00510.x
[39] Tian, R.; Wang, Y., Optimal strategies and pricing analysis in \(M/M/1\) queues with a single working vacation and multiple vacations, RAIRO-Oper. Res., 54, 6, 1593-1612 (2020) · Zbl 1468.60110 · doi:10.1051/ro/2019114
[40] Wang, K.H., Chen, W.L., Yang, D.Y.: Optimal management of the machine repair problem with working vacation: Newton’s method. J. Comput. Appl. Math. 233(2), 449-458 (2009) · Zbl 1180.90098
[41] Yang, DY; Wang, KH; Wu, CH, Optimization and sensitivity analysis of controlling arrivals in the queueing system with single working vacation, J. Comput. Appl. Math., 234, 2, 545-556 (2010) · Zbl 1191.60106 · doi:10.1016/j.cam.2009.12.046
[42] Zhang, M.; Hou, Z., \(M/G/1\) queue with single working vacation, J. Appl. Math. Comput., 39, 1-2, 221-234 (2012) · Zbl 1296.60255 · doi:10.1007/s12190-011-0532-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.