×

Detecting interactions in discrete-time dynamics by random variable resetting. (English) Zbl 1466.37059

Summary: Detecting the interactions in networks helps us to understand the collective behaviors of complex systems. However, doing so is challenging due to systemic noise, nonlinearity, and a lack of information. Very few researchers have attempted to reconstruct discrete-time dynamic networks. Recently, R. Shi et al. [Commun. Nonlinear Sci. Numer. Simul. 72, 407–416 (2019; Zbl 1466.94071)] proposed resetting a random state variable to infer the interactions in a continuous-time dynamic network. In this paper, we introduce a random resetting method for discrete-time dynamic networks. The statistical characteristics of the method are investigated and verified with numerical simulations. In addition, this reconstruction method was evaluated for limited data and weak coupling and within multiple-attractor systems.
©2021 American Institute of Physics

MSC:

37M05 Simulation of dynamical systems
37A50 Dynamical systems and their relations with probability theory and stochastic processes
92B20 Neural networks for/in biological studies, artificial life and related topics

Citations:

Zbl 1466.94071

Software:

KernSmooth
Full Text: DOI

References:

[1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: Structure and dynamics, Phys. Rep., 424, 175-308 (2006) · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[2] Datta, S. S., Book review ‘Networks: An Introduction,’ by M. Newman, Oxford University Press, 2010; ISBN: 978-0-19-920665-0 (hardback), Pure Appl. Geophys., 169, 295-296 (2012) · Zbl 1195.94003 · doi:10.1007/s00024-011-0312-4
[3] Timme, M.; Casadiego, J., Revealing networks from dynamics: An introduction, J. Phys. A, 47, 343001 (2014) · Zbl 1305.92036 · doi:10.1088/1751-8113/47/34/343001
[4] Stankovski, T.; Pereira, T.; McClintock, P. V.; Stefanovska, A., Coupling functions: Universal insights into dynamical interaction mechanisms, Rev. Mod. Phys., 89, 045001 (2017) · doi:10.1103/RevModPhys.89.045001
[5] Park, H.-J.; Friston, K., Structural and functional brain networks: From connections to cognition, Science, 342, 1238411 (2013) · doi:10.1126/science.1238411
[6] Reynolds-Barredo, J. M.; Newman, D. E.; Carreras, B. A.; Dobson, I., The interplay of network structure and dispatch solutions in power grid cascading failures, Chaos, 26, 113111 (2016) · doi:10.1063/1.4967736
[7] Jiao, W.; Muhua, Z.; Wei, W.; Huijie, Y.; Changgui, G., Double transition of information spreading in a two-layered network, Chaos, 28, 083117 (2018) · doi:10.1063/1.5038853
[8] Dodel, S.; Herrmann, J. M.; Geisel, T., Functional connectivity by cross-correlation clustering, Neurocomputing, 44, 1065-1070 (2002) · Zbl 1007.68791 · doi:10.1016/S0925-2312(02)00416-2
[9] Ostojic, S.; Brunel, N.; Hakim, V., How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains, J. Neurosci., 29, 10234-10253 (2009) · doi:10.1523/JNEUROSCI.1275-09.2009
[10] Zhou, D.; Xiao, Y.; Zhang, Y.; Xu, Z.; Cai, D., Causal and structural connectivity of pulse-coupled nonlinear networks, Phys. Rev. Lett., 111, 054102 (2013) · doi:10.1103/PhysRevLett.111.054102
[11] Leng, S.; Xu, Z.; Ma, H., Reconstructing directional causal networks with random forest: Causality meeting machine learning, Chaos, 29, 093130 (2019) · doi:10.1063/1.5120778
[12] Schreiber, T., Measuring information transfer, Phys. Rev. Lett., 85, 461 (2000) · doi:10.1103/PhysRevLett.85.461
[13] Frenzel, S.; Pompe, B., Partial mutual information for coupling analysis of multivariate time series, Phys. Rev. Lett., 99, 204101 (2007) · doi:10.1103/PhysRevLett.99.204101
[14] Staniek, M.; Lehnertz, K., Symbolic transfer entropy, Phys. Rev. Lett., 100, 158101 (2008) · doi:10.1103/PhysRevLett.100.158101
[15] Barnett, L.; Barrett, A. B.; Seth, A. K., Granger causality and transfer entropy are equivalent for Gaussian variables, Phys. Rev. Lett., 103, 238701 (2009) · doi:10.1103/PhysRevLett.103.238701
[16] Ching, E. S.; Lai, P.-Y.; Leung, C., Reconstructing weighted networks from dynamics, Phys. Rev. E, 91, 030801 (2015) · doi:10.1103/PhysRevE.91.030801
[17] Tam, H.; Ching, E. S.; Lai, P.-Y., Reconstructing networks from dynamics with correlated noise, Physica A, 502, 106-122 (2018) · Zbl 1514.62088 · doi:10.1016/j.physa.2018.02.166
[18] Ching, E. S.; Tam, H., Reconstructing links in directed networks from noisy dynamics, Phys. Rev. E, 95, 010301 (2017) · doi:10.1103/PhysRevE.95.010301
[19] Chen, Y.; Wang, S.; Zheng, Z.; Zhang, Z.; Hu, G., Depicting network structures from variable data produced by unknown colored-noise driven dynamics, Europhys. Lett., 113, 18005 (2016) · doi:10.1209/0295-5075/113/18005
[20] Chen, Y.; Zhang, Z.; Chen, T.; Wang, S.; Hu, G., Reconstruction of noise-driven nonlinear networks from node outputs by using high-order correlations, Sci. Rep., 7, 1-11 (2017) · doi:10.1038/s41598-016-0028-x
[21] Chen, Y.; Zhang, C.; Chen, T.; Wang, S.; Hu, G., Reconstruction of noise-driven nonlinear dynamic networks with some hidden nodes, Sci. China Phys. Mech. Astron., 60, 070511 (2017) · Zbl 1249.37013 · doi:10.1007/s11433-017-9024-9
[22] Shi, R.; Hu, G.; Wang, S., Reconstructing nonlinear networks subject to fast-varying noises by using linearization with expanded variables, Commun. Nonlinear Sci. Numer. Simul., 72, 407-416 (2019) · Zbl 1466.94071 · doi:10.1016/j.cnsns.2019.01.010
[23] Yu, D.; Parlitz, U., Estimating parameters by autosynchronization with dynamics restrictions, Phys. Rev. E, 77, 066221 (2008) · doi:10.1103/PhysRevE.77.066221
[24] Levnajić, Z.; Pikovsky, A., Network reconstruction from random phase resetting, Phys. Rev. Lett., 107, 034101 (2011) · doi:10.1103/PhysRevLett.107.034101
[25] Shi, R.; Deng, C.; Wang, S., Detecting directed interactions of networks by random variable resetting, Europhys. Lett., 124, 18002 (2018) · doi:10.1209/0295-5075/124/18002
[26] Kaneko, K., Overview of coupled map lattices, Chaos, 2, 279-282 (1992) · Zbl 1055.37540 · doi:10.1063/1.165869
[27] Chandra, G.; Chandra, N.; Verma, S., A review on multiple chaotic maps for image encryption with cryptographic technique, Int. J. Comput. Appl., 121, 6-9 (2015)
[28] Lai, P.-Y., Reconstructing network topology and coupling strengths in directed networks of discrete-time dynamics, Phys. Rev. E, 95, 022311 (2017) · doi:10.1103/PhysRevE.95.022311
[29] May, R. M., “Simple mathematical models with very complicated dynamics,” in The Theory of Chaotic Attractors, edited by B. R. Hunt, T. Y. Li, J. A. Kennedy, and H. E. Nusse (Springer, New York, 2004), pp. 85-93.
[30] Erdős, P.; Rényi, A., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 5, 17-60 (1960) · Zbl 0103.16301
[31] Wand, M. P.; Jones, M. C., Kernel Smoothing (1994), CRC Press · Zbl 0854.62043
[32] Scott, D. W., Multivariate Density Estimation: Theory, Practice, and Visualization (2015), John Wiley & Sons · Zbl 1311.62004
[33] Hénon, M., “A two-dimensional mapping with a strange attractor,” in The Theory of Chaotic Attractors (Springer, 1976), pp. 94-102. · Zbl 0576.58018
[34] Madan, R. N., Chua’s Circuit: A Paradigm for Chaos (1993), World Scientific · Zbl 0861.58026
[35] Levnajić, Z.; Pikovsky, A., Phase resetting of collective rhythm in ensembles of oscillators, Phys. Rev. E, 82, 056202 (2010) · doi:10.1103/PhysRevE.82.056202
[36] Alvarez, G.; Li, S., Some basic cryptographic requirements for chaos-based cryptosystems, Int. J. Bifurcation Chaos, 16, 2129-2151 (2006) · Zbl 1192.94088 · doi:10.1142/S0218127406015970
[37] Wang, X.; Guan, N.; Zhao, H.; Wang, S.; Zhang, Y., A new image encryption scheme based on coupling map lattices with mixed multi-chaos, Sci. Rep., 10, 1-15 (2020) · doi:10.1038/s41598-019-56847-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.