×

Classical boundary-value problem in Riemannian quantum gravity and self-dual Taub-NUT-(anti) de Sitter geometries. (English) Zbl 1005.83011

Summary: The classical boundary-value problem of the Einstein field equations is studied with an arbitrary cosmological constant, in the case of a compact \((S^3)\) boundary given a biaxial Bianchi-IX positive-definite three-metric, specified by two radii \((a,b)\). For the simplest, four-ball topology of the manifold with this boundary, the regular classical solutions are found within the family of Taub-NUT-(anti) de Sitter metrics with self-dual Weyl curvature. For arbitrary choice of positive radii \((a,b)\), we find that there are three solutions for the infilling geometry of this type. We obtain exact solutions for them and for their Euclidean actions. The case of negative cosmological constant is investigated further. For reasonable squashing of the three-sphere, all three infilling solutions have real-valued actions which possess a “cusp catastrophe” structure with a non-self-intersecting “catastrophe manifold” implying that the dominant contribution comes from the unique real positive-definite solution on the ball. The positive-definite solution exists even for larger deformations of the three-sphere, as long as a certain inequality between a and b holds. The action of this solution is proportional to \(-a^3\) for large a \((\sim b)\) and hence larger radii are favoured. The same boundary-value problem with more complicated interior topology containing a “bolt” is investigated in a forthcoming paper.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
83C45 Quantization of the gravitational field
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1965), Dover: Dover New York · Zbl 0515.33001
[2] Atiyah, M. F.; Hitchin, N. J.; Singer, I. M., Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. London A, 362, 425 (1978) · Zbl 0389.53011
[3] Barnard, S.; Child, J. M., Higher Algebra (1936), Macmillan: Macmillan India · JFM 62.1067.01
[4] Carter, B., Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys., 10, 280 (1968) · Zbl 0162.59302
[5] Cvetič, M.; Gibbons, G. W.; Lu, H.; Pope, C. N., Bianchi IX self-dual Einstein metrics and singular G(2) manifolds · Zbl 1048.53033
[6] D’Eath, P. D., Supersymmetric Quantum Cosmology (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0889.53052
[7] Eguchi, T.; Gilkey, P. B.; Hanson, A. J., Gravitation, gauge theories and differential geometry, Phys. Rep., 66, 213 (1980)
[8] Eguchi, T.; Hanson, A. J., Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. B, 74, 249 (1978)
[9] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals (1965), McGraw-Hill: McGraw-Hill New York · Zbl 0176.54902
[10] Gibbons, G. W.; Hawking, S. W., Action integrals and partition functions in quantum gravity, Phys. Rev. D, 15, 2752 (1977)
[11] Gibbons, G. W.; Hawking, S. W., Classification of gravitational instanton symmetries, Commun. Math. Phys., 66, 291 (1979)
[12] Gibbons, G. W.; Pope, C. N., \(CP^2\) as a gravitational instanton, Commun. Math. Phys., 61, 239 (1978) · Zbl 0389.53013
[13] Gibbons, G. W.; Pope, C. N., The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Commun. Math. Phys., 66, 267 (1979)
[14] Hartle, J. B.; Hawking, S. W., Wave function of the universe, Phys. Rev. D, 28, 2960 (1983) · Zbl 1370.83118
[15] Hawking, S. W., Gravitational instantons, Phys. Lett. A, 60, 81 (1977)
[16] Hitchin, N. J., Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom., 42, 1, 30-112 (1995) · Zbl 0861.53049
[17] Jensen, L. G.; Louko, J.; Ruback, P. J., Biaxial Bianchi type IX quantum cosmology, Nucl. Phys. B, 351, 662 (1991)
[18] Page, D. N., Taub-NUT instanton with an horizon, Phys. Lett. B, 78, 249 (1978)
[19] Pedersen, H., Einstein metrics, spinning top motions and monopoles, Math. Ann., 274, 35 (1986) · Zbl 0566.53058
[20] Poston, T.; Stewart, I., Catastrophe Theory and Its Applications (1978), Pitman: Pitman London · Zbl 0382.58006
[21] Reid, M., Undergraduate Algebraic Geometry (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0701.14001
[22] Sakai, T., Cut loci of Berger’s spheres, Hokkaido Math. J., 10, 1, 143-155 (1981) · Zbl 0469.53041
[23] Tod, K. P., Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A, 190, 221 (1994) · Zbl 0960.83505
[24] Wess, J.; Bagger, J., Supersymmetry and Supergravity (1992), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.