×

Concordance of knots in \(S^1 \times S^2\). (English) Zbl 1497.57003

Summary: We establish a number of results about smooth and topological concordance of knots in \(S^1 \times S^2\). The winding number of a knot in \(S^1 \times S^2\) is defined to be its class in \(H_1(S^1 \times S^2;\mathbb{Z}) \cong \mathbb{Z}\). We show that there is a unique smooth concordance class of knots with winding number one. This improves the corresponding result of Friedl-Nagel-Orson-Powell [S. Friedl et al., Trans. Am. Math. Soc. 371, No. 4, 2279–2306 (2019; Zbl 1421.57018)] in the topological category. We say a knot in \(S^1 \times S^2\) is slice (respectively, topologically slice) if it bounds a smooth (respectively, locally flat) disk in \(D^2 \times S^2\). We show that there are infinitely many topological concordance classes of non-slice knots, and moreover, for any winding number other than \(\pm 1\), there are infinitely many topological concordance classes even within the collection of slice knots. Additionally, we demonstrate the distinction between the smooth and topological categories by constructing infinite families of slice knots that are pairwise topologically but not smoothly concordant, as well as non-slice knots that are topologically slice and are pairwise topologically, but not smoothly, concordant.

MSC:

57K10 Knot theory

Citations:

Zbl 1421.57018

References:

[1] J.Batson, ‘Nonorientable slice genus can be arbitrarily large’, Math. Res. Lett.21 (2014) 423-436. · Zbl 1308.57004
[2] A. J.Casson and C. McA.Gordon, ‘Cobordism of classical knots’, À la recherche de la topologie perdue, Progress of Mathematics 62 (Birkhäuser Boston, Boston, MA, 1986) 181-199. With an appendix by P. M. Gilmer.
[3] J.Cerf, Sur les difféomorphismes de la sphère de dimension trois \(( \operatorname{\Gamma}_4 = 0 )\), Lecture Notes in Mathematics 53 (Springer, Berlin-New York, 1968). · Zbl 0164.24502
[4] J. C.Cha and C.Livingston, ‘Knot signature functions are independent’, Proc. Amer. Math. Soc.132 (2004) 2809-2816. · Zbl 1049.57004
[5] D.Cimasoni and V.Florens, ‘Generalized Seifert surfaces and signatures of colored links’, Trans. Amer. Math. Soc.360 (2008) 1223-1264. · Zbl 1132.57004
[6] T. D.Cochran, B. D.Franklin, M.Hedden and P. D.Horn, ‘Knot concordance and homology cobordism’, Proc. Amer. Math. Soc.141 (2013) 2193-2208. · Zbl 1276.57007
[7] P.Feller, J.Park and A.Ray, ‘On the upsilon invariant and satellite knots’, Preprint, 2016, https://arxiv.org/abs/1604.04901.
[8] M. H.Freedman, ‘A surgery sequence in dimension four; the relations with knot concordance’, Invent. Math.68 (1982) 195-226. · Zbl 0504.57016
[9] M. H.Freedman and F.Quinn, Topology of 4‐manifolds, Princeton Mathematical Series 39 (Princeton University Press, Princeton, NJ, 1990). · Zbl 0705.57001
[10] S.Friedl, M.Nagel, P.Orson and M.Powell, ‘Satellites and concordance of knots in 3‐manifolds’, Trans. Amer. Math. Soc., https://doi.org/10.1090/tran/7313. · Zbl 1421.57018 · doi:10.1090/tran/7313
[11] S.Garoufalidis and P.Teichner, ‘On knots with trivial Alexander polynomial’, J. Differential Geom.67 (2004) 167-193. · Zbl 1095.57007
[12] P. M.Gilmer and C.Livingston, ‘On embedding 3‐manifolds in 4‐space’, Topology22 (1983) 241-252. · Zbl 0523.57020
[13] P. M.Gilmer and C.Livingston, ‘The nonorientable 4‐genus of knots’, J. Lond. Math. Soc. (2) 84 (2011) 559-577. · Zbl 1233.57003
[14] H.Gluck, ‘The embedding of two‐spheres in the four‐sphere’, Trans. Amer. Math. Soc.104 (1962) 308-333. · Zbl 0111.18804
[15] R. E.Gompf and A. I.Stipsicz, 4‐Manifolds and Kirby calculus, Graduate Studies in Mathematics 20 (American Mathematical Society, Providence, RI, 1999). · Zbl 0933.57020
[16] C.Livingston, ‘Mazur manifolds and wrapping number of knots in \(S^1 \times S^2\)’, Houston J. Math.11 (1985) 523-533. · Zbl 0604.57010
[17] H.Murakami and A.Yasuhara, ‘Four‐genus and four‐dimensional clasp number of a knot’, Proc. Amer. Math. Soc.128 (2000) 3693-3699. · Zbl 0955.57007
[18] M.Nagel, P.Orson, M.Powell and J.Park, ‘Smooth and topological almost concordance’, Int. Math. Res. Not., https://doi.org/10.1093/imrn/rnx338. · Zbl 1479.57016 · doi:10.1093/imrn/rnx338
[19] P.Ozsváth, A. I.Stipsicz and Z.Szabó, ‘Unoriented knot Floer homology and the unoriented four‐ball genus’, Int. Math. Res. Not. IMRN (2017) 5137-5181. · Zbl 1405.57024
[20] P.Ozsváth and Z.Szabó, ‘Absolutely graded Floer homologies and intersection forms for four‐manifolds with boundary’, Adv. Math.173 (2003) 179-261. · Zbl 1025.57016
[21] P.Ozsváth and Z.Szabó, ‘Knot Floer homology and the four‐ball genus’, Geom. Topol.7 (2003) 615-639. · Zbl 1037.57027
[22] E. Z.Yildiz, ‘A note on knot concordance’, Preprint, 2017, https://arxiv.org/abs/1707.01650.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.