×

Global \(O(t^{-\alpha})\) synchronization of fractional-order non-autonomous neural network model with time delays through centralized data-sampling approach. (English) Zbl 1448.93117

Summary: This paper aims to investigate the global \(O(t^{-\alpha})\) synchronization of a class of fractional-order non-autonomous neural networks with time delay. Using centralized data-sampling principle and the theory of fractional differential equations, sufficient criteria for the \(O(t^{-\alpha})\) synchronization is derived. Centralized data-sampling control is applied in the drive-response-based coupled neural networks to achieve global \(O(t^{-\alpha})\) synchronization. It is a more effective strategy as it gives better control performance. Numerical examples are also given to illustrate the validity of the theoretical result.

MSC:

93B70 Networked control
93C57 Sampled-data control/observation systems
26A33 Fractional derivatives and integrals
34D06 Synchronization of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[2] Kinh, Ct; Hien, Lv; Ke, Td, Power-rate synchronization of fractional-order nonautonomous neural networks with heterogeneous proportional delays, Neural Process. Lett., 47, 1, 139-151 (2018) · doi:10.1007/s11063-017-9637-z
[3] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific York, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[4] Zalp, No; Demirci, E., A fractional order SEIR model with vertical transmission, Math. Comput. Modell., 54, 1-2, 1-6 (2011) · Zbl 1225.34011
[5] Laskin, N., Fractional market dynamics, Physica A, 287, 3-4, 482-492 (2000) · doi:10.1016/S0378-4371(00)00387-3
[6] Kilbas, Aa; Srivastava, Hm; Trujillo, Jj, Theory and Application of Fractional Differential Equations (2006), New York: Elsevier, New York · Zbl 1092.45003
[7] Ahmeda, E.; Elgazzar, As, On fractional order differential equations model for nonlocal epidemics, Physica A, 379, 607-614 (2007) · doi:10.1016/j.physa.2007.01.010
[8] Higgs, Mh; Spain, Wj; Fairhall, Al, Fractional differentiation by neocortical pyramidal neurons, Nat. Neurosci., 11, 1335-1342 (2008) · doi:10.1038/nn.2212
[9] Zhang, J.E.: Centralized Data-Sampling Approach for Global \(O(t^{-\alpha })\) Synchronization of Fractional-Order Neural Networks with Time Delays, Discrete Dynamics in Nature and Society, vol. 2017, Article ID 6157292 · Zbl 1369.92008
[10] Chen, B.; Chen, J., Global \(O(t^{-\alpha })\) stability and global asymptotical periodicity for a non-autonomous fractional-order neural networks with time-varying delays, Neural Netw., 73, 47-57 (2016) · Zbl 1398.34095 · doi:10.1016/j.neunet.2015.09.007
[11] Caponetto, R.; Fortuna, L.; Porto, D., Bifurcation and chaos in noninteger order cellular neural networks, Int. J. Bifurc. Chaos, 8, 1527-1539 (1998) · Zbl 0936.92006 · doi:10.1142/S0218127498001170
[12] Arena, P.; Fortuna, L.; Porto, D., Chaotic behavior in noninteger-order cellular neural networks, Phys. Rev. E, 61, 776-781 (2000) · doi:10.1103/PhysRevE.61.776
[13] Pecora, L.; Carroll, T., Synchronization in chaotic system, Phys. Rev. Lett., 64, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[14] Chao, Wr; Dong, Hx; Ping, Cl, Finite-time stability of fractional-order neural networks with delay, Commun. Theor. Phys., 60, 189-193 (2013) · Zbl 1284.92016 · doi:10.1088/0253-6102/60/2/08
[15] Chen, J.; Zeng, Z.; Jiang, P., Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Netw., 51, 1-8 (2014) · Zbl 1306.34006 · doi:10.1016/j.neunet.2013.11.016
[16] Bao, H.; Cao, J., Projective synchronization of fractional-order memristor-based neural networks, Neural Netw., 63, 1-9 (2015) · Zbl 1323.93036 · doi:10.1016/j.neunet.2014.10.007
[17] Rakkiyappan, R.; Velmurugan, G.; Cao, J., Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays, Nonlinear Dyn., 78, 4, 2823-2836 (2014) · Zbl 1331.34154 · doi:10.1007/s11071-014-1628-2
[18] Chen, Lp; Wu, Rc; Cao, J.; Liu, Jb, Stability and synchronization of memristor-based fractional-order delayed neural networks, Neural Netw., 71, 37-44 (2015) · Zbl 1398.34096 · doi:10.1016/j.neunet.2015.07.012
[19] Carroll, Tl; Pecora, Lm, Synchronizing chaotic systems, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 38, 4, 453-456 (1991) · doi:10.1109/31.75404
[20] Chen, Wh; Wang, Z.; Lu, X., On sampled-data control formaster-slave synchronization of chaotic Lur’e systems, IEEE Trans. Circuits Syst. II Express Br., 59, 8, 515-519 (2012) · doi:10.1109/TCSII.2012.2204114
[21] Zhang, J.: Centralized and decentralized data-sampling principles for outer-synchronization of fractional-order neural networks. Complexity 2017, 11 (2017) (Article ID 6290646) · Zbl 1367.93356
[22] Dashkovskiy, S.; Pavlichkov, S., Constructive design of adaptive controllers for nonlinear MIMO systems with arbitrary switchings, IEEE Trans. Autom. Control, 61, 7, 2001-2007 (2016) · Zbl 1359.93223 · doi:10.1109/TAC.2015.2491679
[23] Pyrkin, A.A., Bobtsov, A.A.: Adaptive controller for linear systemwith input delay and output disturbance. In: Proceedings of the 52nd IEEE Conference on Decision and Control (CDC ’13), vol. 61, pp. 4229-4234. IEEE, Florence (2013) · Zbl 1359.93232
[24] Azzaro, Je; Veiga, Ra, Slidingmode controller with neural network identification, IEEE Lat. Am. Trans., 13, 12, 3754-3757 (2015) · doi:10.1109/TLA.2015.7404904
[25] Gu, Y.; Yu, Y.; Hu Wang, H., Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty, J Frankl. Inst., 353, 3657-3684 (2016) · Zbl 1347.93013 · doi:10.1016/j.jfranklin.2016.06.029
[26] Das, P.; Das, P.; Kundu, A., Delayed feedback controller based finite time synchronization of discontinuous neural networks with mixed time-varying delays, Neural Process. Lett., 49, 693-709 (2018) · doi:10.1007/s11063-018-9850-4
[27] Das, A.; Das, P.; Roy, Ab, Chaos in a three-dimensional general model of neural network, Int. J. Bifurc. Chaos, 12, 10, 2271-2281 (2002) · Zbl 1043.37512 · doi:10.1142/S0218127402005820
[28] Das, P., Kundu, A.: Global stability, bifurcation, and chaos control in a delayed neural network model. Adv. Artif. Neural Syst. 2014, 8 (2014) (Article ID 369230)
[29] Das, P.; Kundu, A., Bifurcation and chaos in delayed cellular neural network model, J. Appl. Math. Phys., 2, 219-224 (2014) · doi:10.4236/jamp.2014.25027
[30] Kundu, A., Das, P.: Global Stability and Chaos-Control in Delayed N-Cellular Neural Network Model, Applied Mathematics, Springer Proceedings in Mathematics & Statistics, vol. 146. Springer, New Delhi
[31] Cong, Nd; Tuan, Ht, Existence, uniqueness, and exponential boundedness of global solutions to delay fractional differential equations, Mediterr. J. Math., 14, 193 (2017) · Zbl 1379.34071 · doi:10.1007/s00009-017-0997-4
[32] Kaslik, E.; Sivasundaram, S., Dynamics of Fractional-Order Neural Networks (2011), San Jose: IJCNN, San Jose · doi:10.1109/IJCNN.2011.6033277
[33] Anastasio, T., The fractional-order dynamics of brainstem vestibulo-oculomotor neurons, Biol. Cybern., 72, 69-79 (1994) · doi:10.1007/BF00206239
[34] Yang, Z.; Cao, J., Initial value problems for arbitrary order fractional differential equations with delay, Commun. Nonlinear Sci. Numer. Simul., 18, 11, 2993-3005 (2013) · Zbl 1329.34122 · doi:10.1016/j.cnsns.2013.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.