×

Progress on the boundary element method to study the disturbance fields of bodies moving in an unbounded medium. (English) Zbl 0820.76052

For a large class of fluid mechanics problems, which can be dealt with linearized potential equations, the boundary element method proves to be quite useful, especially for its easy application and relatively less computational effort compared to the field methods. The boundary element method has undergone some significant advancements in the last decade with respect to the study of steady and unsteady flow problems concerning wing aerodynamics in compressible medium, flow fields of propellers and rotors and acoustical disturbance propagation from moving bodies. In this paper a few recent contributions are concisely described.

MSC:

76M15 Boundary element methods applied to problems in fluid mechanics
76B99 Incompressible inviscid fluids
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Full Text: DOI

References:

[1] Ahmed, S. R. 1973: Berechnung des reibungslosen Strömungsfeldes von dreidimensionalen auftriebsbehafteten Tragflügeln, Rümpfen und Flügel-Rumpf-Kombinationen nach dem Panel-Verfahren, Deutsche Luft- und Raumfahrt, Forschungsbericht 73-102
[2] Basu, B. C.; Hancock, G. J. 1978: The Unsteady Motion of a Two-Dimensional Aerofoil in Incompressible Inviscid Flow, Journal Fluid Mechanics 87(1); 159-178 · doi:10.1017/S0022112078002980
[3] Biermann, D.; Hartmann, E. P. 1940: Wind-Tunnel Tests of Four- and Six-Blade Single and Dual-Rotating Tractor Propellers, NACA Rep. No. 747
[4] Biermann, D.; Gray, W. H. 1941: Wind-Tunnel Tests of Eight-Blade Single and Dual-Rotating Propellers in the Tractor Position, NACA ARR
[5] Boswell, R. J. 1971: Design, Cavitation Performance, and Open-Water Performance of a Series of Research Skewed Propellers, NSRDC Report No. 3339
[6] Bratt, J. B. 1953: Flow Patterns in the Wake of oscillating airfoil, R & M 2773, Royal Aeronautical Establishment, Great Britain
[7] Crispin, Y. 1982: Unsteady Rotor aerodynamics using a Vortex panel method, AIAA-82-1348, NASA Ames Research Center, Moffet field, CA, AIAA 9th Atmospheric flight mechanics Conference, August 9-11, San Diego, CA.
[8] Das, A. 1977: Some basic and New Aspects on the Disturbance fields of Unsteady Singularities in Uniform Motion, AGARD CP No. 227, Unsteady Aerodynamics, Paper No. 6, pp. 1-31
[9] Das, A. 1984: Wave Propagation from moving singularities and a unified exposition of the linearized Theory for Aerodynamics and Acoustics, DFVLR-FB 84-17
[10] Das, A. 1984: A Unified Approach for the Aerodynamics and Acoustics of Propellers in Forward Motion, AGARD-CPP-366, pp. 9.1-9.28
[11] Das, A. 1987: On the kutta condition for flows around lifting aerofoils and wings, DLR-FB 87-40
[12] Djojodihardjo, R. H.; Widnall, S. E. 1969: A Numerical Method for the Calculation of non-linear, unsteady lifting potential flow problems, AIAA-Journal, 7(10): 2001-2009 · Zbl 0187.24202 · doi:10.2514/3.5494
[13] Dobrzynski, W.; Heller, H. H.; Powers, J. O.; Densmore, J. E. 1986: DFVLR/FAA Propeller noise tests in the german-dutch wind tunnel DNW, DFVLR-IB 129-86/3, FFA-Report No. AEE 86-3
[14] Farassat, F. 1981: Linear acoustic formulas for calculation of rotating blade noise, AIAA-Journal 19, pp. 1122-1130 · Zbl 0473.76065 · doi:10.2514/3.60051
[15] Ffowcs-Williams, J. E.; Hawkings, D. 1969: Sound generation by turbulence and surface in arbitrary motion, Phil. Trans. Roy. Soc. A 264: 321-342 · Zbl 0182.59205 · doi:10.1098/rsta.1969.0031
[16] Fornasier, L. 1983: Calculation of supersonic flow over realistic configurations by an updated low-order panel method, AIAA-83-0010
[17] Garrick, I. E.; Watkins, C. E. 1954: A theoretical study of the effects of forward speed on the free-space sound pressure field around propellers, NACA TR 1198
[18] Giesing, J. P. 1968: Nonlinear Two-Dimensional unsteady potential flow with lift, Journal of Aircraft, Vol. 5, No. 2
[19] Hanson, D. B. 1985: Compressible lifting surface theory for propeller performance calculations, Journal of Aircraft, 8: 19-27 · doi:10.2514/3.45075
[20] Herrmann, U. 1988: Erweiterung eines Dipolleiter-Verfahrens zur Berechnung der instationären Lastverteilung auf Propellerblättern bei nichtaxialer Anströmung im inkompressiblen medium, Diplomarbeit, TU Braunschweig
[21] Hess, J. L.; Smith, A. M. O. 1967: Calculation of potential flows about arbitrary bodies, progress in aeronautical sciences Pergamon Press, 8: 1-138 · Zbl 0204.25602
[22] Hess, J. L.; Valarezo, W. O. 1985: Calculation of steady flow about propellers by means of a surface panel method, AIAA-Paper 85-0283
[23] Hoijemakers, H. W. M. 1982: A panel method for the prediction of aerodynamic characteristics of complex configurations in linearized subsonic or supersonic flow, Missile aerodynamics, AGARD CP-336
[24] Holst, T. 1979: Implicit algorithm for the conservative transonic full-potential equation using an arbitrary mesh, AIAA-Journal 17(10): 1038-1045 · Zbl 0441.76003 · doi:10.2514/3.61274
[25] Jameson, A.; Caughey, D. A. 1977: A finite volume method for Transonic potential flow calculations, AIAA-Paper 77-635 · Zbl 0522.76061
[26] Jameson, A.; Schmidt, W.; Turkel, E. 1981: Numerical simulation of the Euler equations by Finite Volume Method using Runge-Kutta Time Stepping Schemes, AIAA-Paper 81-1259
[27] Jones, W. P.; Moore, J. A. 1973: Simplified aerodynamic theory of oscillating thin surfaces in subsonic flow, AIAA-Journal 11: 1305-1309 · Zbl 0296.76031 · doi:10.2514/3.6912
[28] Kim, K. H.; Kobayashi, S. 1984: Pressure distribution on propeller blade surface using numerical lifting-surface theory, Proc. SNAME Symp. Propellers 84, Virginia Beach
[29] Kohlmeier, H. H. 1984: Eine direkte Berechnungsmethode für Störfelder bewegter Körper in kompressiblen Medien bei Unterschall-Machzahlen, Dissertation, TU Braunschweig
[30] Kondo, K. 1957: On the potential-theoretical fundamentals of the aerodynamics of screw propellers at high Speed, Journal of the faculty of engineering, University of Tokyo, 25: 1-36
[31] Kraus, W.; Sacher, P. 1973: Das Panelverfahren zur Berechnung der Druckverteilung von Flugkörpern im Unterschall, ZFW, 21: 301-311 · Zbl 0319.76045
[32] Labrujere, Th.; Loeve, W.; Sloof, J. W. 1970: An approximate method for calculation of the pressure distribution on wing-body combinations at sub-critical speeds, AGARD Conf. Proceedings No. 71
[33] Lamb, H. 1895: Hydrodynamics, 2nd Edition, Cambridge, Cambridge University Press · Zbl 0828.01012
[34] Lax, P. D.; Wendroff, B. 1966: System of Conservation Laws, Comm Pure & Appl. Math., 13: 217-237 · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[35] MacCormack, R. 1982: A Numerical method for solving the equations of compressible viscous flow, AIAA-Journal, 20: 1275-1281 · Zbl 0493.76068 · doi:10.2514/3.51188
[36] Lighthill, M. J. 1952: On sound generated aerodynamically, I. General theory, Proc. Roy. Soc. A 211: 564-587 · Zbl 0049.25905 · doi:10.1098/rspa.1952.0060
[37] Liepmann, H. W.; Roshko, A. 1957: Elements of Gasdynamics, New York, John Wiley
[38] Lohmann, D. 1992: Prediction of ducted radiator Fan Aeroacoustics with a lifting surface method, DGLR/AIAA 14th Aeroacoustic conference, Aachen, Germany, Volume II, AIAA No. 92-02-098, pp. 576-606
[39] Lowson, M. V. 1965: The sound field of singularities in motion, Proc. Roy. Soc. A 286: 559-592 · doi:10.1098/rspa.1965.0164
[40] Maynard, J. D.; Murphy, M. P. 1950: Pressure distribution on the blade sections of the NACA 10(3:: (066)-033 Propeller under operation conditions, NACA RM L9L12
[41] Morino, L.; Chen, L. T.; Sucio, E. O. 1975: Steady and Oscillatory subsonic and supersonic aerodynamics around complex configurations, AIAA-Journal 13: 368-374 · Zbl 0305.76028 · doi:10.2514/3.49706
[42] Morino, L.; Tseng, K. 1990: A general theory of unsteady compressible potential flows with applications to aeroplanes and rotors, Developments in boundary element methods Vol. 6, Elsevier Apl. Sci. Publishers, Barking UK · Zbl 0714.76059
[43] Murman, E. M., Cole, J. D. 1971: Calculation of plane steady transonic flows, AIAA-Journal, 9(1): 114-121 · Zbl 0249.76033 · doi:10.2514/3.6131
[44] Rangwalla, A. A. 1986: Application of a potential code to general unsteady flows in three dimensions, Dissertation Iowa State University Ames, Iowa
[45] Röttgermann, A.; Behr, R.; Schöttl, Ch.; Wagner, S. 1991: Calculation of Blade-Vortex Interaction of Rotary Wing in Incompressible flow by an Unsteady Vortex-Lattice Method including free wake analysis, In Hackbusch, W., Edtitor, notes on numerical fluid mechanics, 153-166, Vieweg Verlag, Braunschweig · Zbl 0748.76031
[46] Rubbert, P. E.; Saaris, G. R. 1967: A general method for determining the characteristics of Fan-in-Wing, USA AVLABS Technical Report, No. 67-61A
[47] Sarin, S. L. 1993: Comparative investigation of predictive capability of aeroacoustic methods for single rotation Propellers, GARTEUR AG12
[48] Schlichting, H.; Truckenbrodt, E. 1960: Aerodynamik des flugzeuges, Bd. 1 und 2, Berlin, Springer-Verlag · Zbl 0091.17803
[49] Schöne, J. 1989: Ein Tragflächenverfahren zur Berechnung stationärer und instationärer, inkompressibler Propellerumströmung, DFVLR-FB 89-04, 117 pages, 1984, Dissertation TU Braunschweig
[50] Summa, J. M. 1974: Potential flow about three-dimensional streamline lifting configurations with application to wings and Rotor, AFOSR-TR-74-1914, Dept. of Aeronautics and Astronautics, Stanford University, Stanford California, SUDAAR No. 485
[51] Tietjens, O. 1960: Strömungslehre, Erster band, Berlin, Springer-Verlag
[52] Vidjaja, V. T. 1993: Berechnung der instationären inkompressiblen Strömung um Tragflügel und Rotor im Vorwärtsflug, Diplomarbeit 93-01, DLR Braunschweig und TU Braunschweig
[53] Woodward, F. A. 1968: Analysis and design of wing-body combinations at subsonic and supersonic speeds, Journal of Aircraft Vol 5, No. 6
[54] Zierep, J. 1963: Vorlesungen über theoretische Gasdynamik, Bd. I und II, Karlsruhe, G. Braun, Verlag · Zbl 0105.38702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.