×

Agent-based modelling of sports riots. (English) Zbl 07515904

Summary: Riots originating during, or in the aftermath of, sports events can incur significant costs in damages, as well as large-scale panic and injuries. A mathematical description of sports riots is therefore sought to better understand their propagation and limit these physical and financial damages. In this work, we present an agent-based modelling (ABM) framework that describes the qualitative features of populations engaging in riotous behaviour. Agents, pertaining to either a ‘rioter’ or a ‘bystander’ sub-population, move on an underlying lattice and can either be recruited or defect from their respective sub-population. In particular, we allow these individual-level recruitment and defection processes to vary with local population density. This agent-based modelling framework provides the unifying link between multi-population stochastic models and density-dependent reaction processes. Furthermore, the continuum description of this ABM framework is shown to be a system of nonlinear reaction-diffusion equations and faithfully agrees with the average ABM behaviour from individual simulations. Finally, we determine the unique correspondence between the underlying individual-level recruitment and defection mechanisms with their population-level counterparts, providing a link between local-scale effects and macroscale rioting phenomena.

MSC:

82-XX Statistical mechanics, structure of matter

References:

[1] Service, B. P., Report on the 2011 Vancouver Stanley cup riot prosecutions (2016), URL https://www2.gov.bc.ca/assets/gov/law-crime-and-justice/criminal-justice/prosecution-service/reports-publications/stanley-cup-riot-prosecutions.pdf
[2] Tuastad, D., From football riot to revolution. The political role of football in the arab world, Soccer Soc., 15, 3, 376-388 (2014)
[3] Stott, C.; Pearson, G., Football banning orders, proportionality, and public order policing, Howard J. Crim. Justice, 45, 3, 241-254 (2006)
[4] Hopkins, M.; Hamilton-Smith, N., Football banning orders: the highly effective cornerstone of a preventative strategy?, (Football Hooliganism, Fan Behaviour and Crime (2014), Springer), 222-247
[5] Hester, R., Assessing the UK football policing unit funding of football banning orders in times of policing austerity, Policing: J. Policy Pract., 15, 2, 1188-1201 (2021)
[6] Campbell, S.; Chidester, P.; Bell, J.; Royer, J., Remote control: How mass media delegitimize rioting as social protest, Race Gender Class, 158-176 (2004)
[7] Zani, B.; Kirchler, E., When violence overshadows the spirit of sporting competition: Italian football fans and their clubs, J. Commun. Appl. Soc. Psychol., 1, 1, 5-21 (1991)
[8] Mann, L.; Pearce, P., Social psychology of the sports spectator, Psychol. Sport, 173-201 (1978)
[9] Mann, L., On being a sore loser: How fans react to their team’s failure, Aust. J. Psychol., 26, 1, 37-47 (1974)
[10] Russell, G. W., Personalities in the crowd: Those who would escalate a sports riot, Aggress. Behav., 21, 2, 91-100 (1995)
[11] Dunning, E.; Murphy, P.; Williams, J., Spectator violence at football matches: Towards a sociological explanation, Br. J. Sociol., 221-244 (1986)
[12] Branscombe, N. R.; Wann, D. L., Physiological arousal and reactions to outgroup members during competitions that implicate an important social identity, Aggress. Behav., 18, 2, 85-93 (1992)
[13] Bernhardt, P. C.; Dabbs Jr., J. M.; Fielden, J. A.; Lutter, C. D., Testosterone changes during vicarious experiences of winning and losing among fans at sporting events, Physiol. Behav., 65, 1, 59-62 (1998)
[14] Baron, R. A.; Richardson, D. R., Human Aggression (2004), Springer Science & Business Media
[15] Geen, R. G.; McCown, E. J., Effects of noise and attack on aggression and physiological arousal, Motiv. Emot., 8, 3, 231-241 (1984)
[16] Dewar, C. K., Spectator fights at professional baseball games, Rev. Sport Leisure Park For. III, 4, 1, 12-25 (1979)
[17] Gaskell, G.; Pearton, R., Aggression and sport, (Sport, Games and Play (1979), Lawrence Erlbaum Associates: Lawrence Erlbaum Associates New Jersey), 263-295
[18] Semyonov, M.; Farbstein, M., Ecology of sports violences: The case of Israeli soccer, Sociol. Sport J., 6, 1, 50-59 (1989)
[19] Fitzpatrick, B., Broken bats and broken bones: Holding stadium owners accountable for alcohol-fueled fan-on-fan violence, Jeffrey S. Moorad Sports LJ, 22, 663 (2015)
[20] Piquero, A. R.; Jennings, W. G.; Farrington, D. P., The life-course offending trajectories of football hooligans, Eur. J. Criminol., 12, 1, 113-125 (2015)
[21] Guschwan, M., Riot in the curve: Soccer fans in twenty-first century Italy, Soccer Soc., 8, 2-3, 250-266 (2007)
[22] Peitersen, B., Supporter culture in Denmark: the legacy of the ’World’s best supporters’, Soccer Soc., 10, 3-4, 374-385 (2009)
[23] Arms, R. L.; Russell, G. W., Impulsivity, fight history, and camaraderie as predictors of a willingness to escalate a disturbance, Curr. Psychol., 15, 4, 279-285 (1997)
[24] Apter, M. J., The Dangerous Edge: The Psychology of Excitement (1992), Free Press
[25] Russell, G. W., Sport riots: A social-psychological review, Aggress. Violent Behav., 9, 4, 353-378 (2004)
[26] Ostrowsky, M. K., Sports fans, alcohol use, and violent behavior: A sociological review, Trauma Violence Abuse, 19, 4, 406-419 (2018)
[27] Case, R. W.; Boucher, R. L., Spectator violence in sport: A selected review, J. Sport Soc. Issues, 5, 2, 1-14 (1981)
[28] Spaaij, R., Sports crowd violence: An interdisciplinary synthesis, Aggress. Violent Behav., 19, 2, 146-155 (2014)
[29] Lewis, J. M., Sports Fan Violence in North America (2007), Rowman & Littlefield Publishers
[30] Fields, S. K.; Collins, C. L.; Comstock, R. D., Conflict on the courts: A review of sports-related violence literature, Trauma Violence Abuse, 8, 4, 359-369 (2007)
[31] Hogg, M. A., Social identity theory, (Understanding Peace and Conflict Through Social Identity Theory (2016), Springer), 3-17
[32] Stets, J. E.; Burke, P. J., Identity theory and social identity theory, Soc. Psychol. Q., 224-237 (2000)
[33] Granovetter, M., Threshold models of collective behavior, Am. J. Sociol., 83, 6, 1420-1443 (1978)
[34] Bonnasse-Gahot, L.; Berestycki, H.; Depuiset, M.-A.; Gordon, M. B.; Roché, S.; Rodriguez, N.; Nadal, J.-P., Epidemiological modelling of the 2005 french riots: a spreading wave and the role of contagion, Sci. Rep., 8, 1, 1-20 (2018)
[35] Davies, T. P.; Fry, H. M.; Wilson, A. G.; Bishop, S. R., A mathematical model of the London riots and their policing, Sci. Rep., 3, 1303 (2013)
[36] Short, M. B.; Bertozzi, A. L.; Brantingham, P. J., Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9, 2, 462-483 (2010) · Zbl 1282.91273
[37] Mackintosh, D. R.; Stewart, G. T., A mathematical model of communal disorder, Hum. Biol., 215-223 (1972)
[38] Helbing, D.; Farkas, I.; Vicsek, T., Simulating dynamical features of escape panic, Nature, 407, 6803, 487-490 (2000)
[39] Helbing, D.; Molnar, P., Social force model for pedestrian dynamics, Phys. Rev. E, 51, 5, 4282 (1995)
[40] Oliveira, C. L.; Vieira, A. P.; Helbing, D.; Andrade Jr., J. S.; Herrmann, H. J., Keep-left behavior induced by asymmetrically profiled walls, Phys. Rev. X, 6, 1, Article 011003 pp. (2016)
[41] Nakayama, A.; Hasebe, K.; Sugiyama, Y., Instability of pedestrian flow in 2D optimal velocity model with attractive interaction, Comput. Phys. Comm., 177, 1-2, 162-163 (2007)
[42] da Silva, R.; Stock, E. V., Mobile-to-clogging transition in a Fermi-like model of counterflowing particles, Phys. Rev. E, 99, 4, Article 042148 pp. (2019)
[43] Gawroński, P.; Kułakowski, K., Crowd dynamics-being stuck, Comput. Phys. Comm., 182, 9, 1924-1927 (2011)
[44] Chou, C.-I., A knowledge-based evolution algorithm approach to political districting problem, Comput. Phys. Comm., 182, 1, 209-212 (2011)
[45] Silverberg, J. L.; Bierbaum, M.; Sethna, J. P.; Cohen, I., Collective motion of humans in mosh and circle pits at heavy metal concerts, Phys. Rev. Lett., 110, 22, Article 228701 pp. (2013)
[46] Starke, J.; Thomsen, K. B.; Sø rensen, A.; Marschler, C.; Schilder, F.; Dederichs, A.; Hjorth, P., Nonlinear effects in examples of crowd evacuation scenarios, (17th International IEEE Conference on Intelligent Transportation Systems. 17th International IEEE Conference on Intelligent Transportation Systems, ITSC (2014), IEEE), 560-565
[47] Alsenafi, A.; Barbaro, A. B., A multispecies cross-diffusion model for territorial development, Mathematics, 9, 12, 1428 (2021)
[48] Simpson, M. J.; Landman, K. A.; Hughes, B. D., Multi-species simple exclusion processes, Physica A, 388, 4, 399-406 (2009)
[49] Simpson, M. J.; Landman, K. A.; Hughes, B. D., Cell invasion with proliferation mechanisms motivated by time-lapse data, Physica A, 389, 18, 3779-3790 (2010)
[50] Byrne, H. M.; Drasdo, D., Individual-based and continuum models of growing cell populations: a comparison, J. Math. Biol., 58, 4-5, 657 (2009) · Zbl 1311.92060
[51] Van Liedekerke, P.; Palm, M. M.; Jagiella, N.; Drasdo, D., Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results, Comput. Part. Mech., 2, 4, 401-444 (2015)
[52] Fadai, N. T.; Simpson, M. J., Population dynamics with threshold effects give rise to a diverse family of Allee effects, Bull. Math. Biol., 82, 6, 1-22 (2020) · Zbl 1444.92086
[53] Fadai, N. T.; Johnston, S. T.; Simpson, M. J., Unpacking the Allee effect: determining individual-level mechanisms that drive global population dynamics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 20200350 (2020) · Zbl 1472.92174
[54] Perez, L.; Dragicevic, S., An agent-based approach for modeling dynamics of contagious disease spread, Int. J. Health Geogr., 8, 1, 50 (2009)
[55] Ajelli, M.; Gonçalves, B.; Balcan, D.; Colizza, V.; Hu, H.; Ramasco, J. J.; Merler, S.; Vespignani, A., Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models, BMC Infect. Dis., 10, 1, 190 (2010)
[56] Chowdhury, D.; Schadschneider, A.; Nishinari, K., Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms, Phys. Life Rev., 2, 4, 318-352 (2005)
[57] Dickman, R., A contact process with mobile disorder, J. Stat. Mech. Theory Exp., 2009, 08, P08016 (2009) · Zbl 1456.82730
[58] Santos, F.; Dickman, R.; Fulco, U., Pair contact process with diffusion of pairs, J. Stat. Mech. Theory Exp., 2011, 03, P03012 (2011)
[59] Jin, W.; Penington, C. J.; McCue, S. W.; Simpson, M. J., Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions, Phys. Biol., 13, 5, Article 056003 pp. (2016)
[60] Baker, S. A., The mediated crowd: New social media and new forms of rioting, Sociol. Res. Online, 16, 4, 195-204 (2011)
[61] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361 (1977)
[62] Fadai, N. T.; Baker, R. E.; Simpson, M. J., Accurate and efficient discretizations for stochastic models providing near agent-based spatial resolution at low computational cost, J. R. Soc. Interface, 16, 159, Article 20190421 pp. (2019)
[63] Strogatz, S. H., Nonlinear Dynamics and Chaos with Student Solutions Manual: with Applications to Physics, Biology, Chemistry, and Engineering (2018), CRC Press
[64] Johnston, S. T.; Baker, R. E.; Simpson, M. J., Filling the gaps: A robust description of adhesive birth-death-movement processes, Phys. Rev. E, 93, 4, Article 042413 pp. (2016)
[65] Johnston, S. T.; Simpson, M. J.; Crampin, E. J., Predicting population extinction in lattice-based birth-death-movement models, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 476, 2238, Article 20200089 pp. (2020) · Zbl 1472.92180
[66] Lorentz, G. G., Bernstein Polynomials (2013), American Mathematical Soc. · Zbl 0989.41504
[67] Farouki, R. T.; Rajan, V. T., On the numerical condition of polynomials in Bernstein form, Comput. Aided Geom. Design, 4, 3, 191-216 (1987) · Zbl 0636.65012
[68] Murray, J. D., Mathematical Biology: I. an Introduction, Vol. 17 (2007), Springer Science & Business Media
[69] Simpson, M. J.; Landman, K. A.; Hughes, B. D., Pathlines in exclusion processes, Phys. Rev. E, 79, Article 031920 pp. (2009)
[70] Zabłocki, M.; Gościewska, K.; Frejlichowski, D.; Hofman, R., Intelligent video surveillance systems for public spaces-a survey, J. Theor. Appl. Comput. Sci., 8, 4, 13-27 (2014)
[71] Krahnstoever, N.; Tu, P.; Yu, T.; Patwardhan, K.; Hamilton, D.; Yu, B.; Greco, C.; Doretto, G., Intelligent video for protecting crowded sports venues, (2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance (2009), IEEE), 116-121
[72] Liang, F.; Das, V.; Kostyuk, N.; Hussain, M. M., Constructing a data-driven society: China’s social credit system as a state surveillance infrastructure, Policy Internet, 10, 4, 415-453 (2018)
[73] Wong, K. L.X.; Dobson, A. S., We’e just data: Exploring China’s social credit system in relation to digital platform ratings cultures in Westernised democracies, Global Media China, 4, 2, 220-232 (2019)
[74] Billore, S.; Anisimova, T., Panic buying research: A systematic literature review and future research agenda, Int. J. Consum. Stud. (2021)
[75] D’Orsogna, M. R.; Chuang, Y.-L.; Bertozzi, A. L.; Chayes, L. S., Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett., 96, 10, Article 104302 pp. (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.