×

Backward bifurcation and optimal control in transmission dynamics of West Nile virus. (English) Zbl 1191.92024

Summary: The paper considers a deterministic model for the transmission dynamics of the West Nile virus (WNV) in the mosquito-bird-human zoonotic cycle. The model, which incorporates density-dependent contact rates between the mosquito population and the hosts (birds and humans), is rigorously analyzed using dynamical systems techniques and theories. These analyses reveal the existence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium of the model co-exists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in WNV transmission dynamics. The epidemiological consequence of backward bifurcation is that the classical requirement of having the reproduction number less than unity, while necessary, is no longer sufficient for WNV elimination from the population. It is further shown that the model with constant contact rates can also exhibit this phenomenon if the WNV-induced mortality in the avian population is high enough.
The model is extended to assess the impact of some anti-WNV control measures, by re-formulating the model as an optimal control problem with density-dependent demographic parameters. This entails the use of two control functions, one for mosquito-reduction strategies and the other for personal (human) protection, and redefining the demographic parameters as density-dependent rates. Appropriate optimal control methods are used to characterize the optimal levels of the two controls. Numerical simulations of the optimal control problem, using a set of reasonable parameter values, suggest that mosquito reduction controls should be emphasized ahead of personal protection measures.

MSC:

92C60 Medical epidemiology
37N25 Dynamical systems in biology
49N90 Applications of optimal control and differential games
92D30 Epidemiology
65C20 Probabilistic models, generic numerical methods in probability and statistics
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI

References:

[1] Adams, B.M., Banks, H.T., Davidian, M., Kwon, H.-D., Tran, H.T., Wynne, S.N., Rosenberg, E.S., 2005. HIV dynamics: Modeling, data analysis and optimal treatment protocols. J. Comput. Appl. Math. 184, 10–49. · Zbl 1075.92030 · doi:10.1016/j.cam.2005.02.004
[2] Bowman, C., Gumel, A.B., van den Driessche, P., Wu, J., Zhu, H., 2005. A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67, 1107–1133. · Zbl 1334.92392 · doi:10.1016/j.bulm.2005.01.002
[3] Blayneh, K., Cao, Y., Kwon, Hee-Dae, 2009. Optimal control of vector-borne diseases: treatment and prevention. Discrete Contin. Dyn. Syst. Ser. 11(3), 587–611. · Zbl 1162.92034 · doi:10.3934/dcdsb.2009.11.587
[4] Burt, F.J., Grobbelaar, A.A., Leman, P.A., Anthony, F.S., Gibson, G.V.F., Swanepoel, R., 2002. Phylogenetic Relationships of Southern African West Nile virus isolates. CDC: Emerging Infectious Diseases 8(8). http://www.medscape.com/viewarticle/440765
[5] Carr, J., 1981. Applications of Centre Manifold Theory. Springer, New York. · Zbl 0464.58001
[6] Castillo-Chavez, C., Song, B., 2004. Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404. · Zbl 1060.92041
[7] Castillo-Chavez, C., Feng, Z., Huang, W., 2002. In: Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., Yakubu, A.-A. (Eds.), Mathematical Approaches for Emerging and Reemerging Infectious Diseases. Springer, New York
[8] Center for Disease Control and Prevention (2005). West Nive Virus Fact Sheet, September 27, 2005. www.cdc.gov/ncidod/westnile/wnv_factsheet.htm
[9] Cruz-Pacheco, G., Esteva, L., Montano-Hirose, J.A., Vargas, D., 2005. Modelling the dynamics of West Nile virus. Bull. Math. Biol. 67, 1157–1172. · Zbl 1334.92397 · doi:10.1016/j.bulm.2004.11.008
[10] Culshaw, R.V., 2004. Optimal HIV treatment by maximising immune response. J. Math. Biol. 48, 545–562. · Zbl 1057.92035 · doi:10.1007/s00285-003-0245-3
[11] Cushing, J.M., 1998. An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71, SIAM, Philadelphia. · Zbl 0939.92026
[12] Darensburg, T., Kocic, V., 2004. On the discrete model of West Nile-like epidemics. Proc. Dyn. Appl. 4, 358–366. · Zbl 1062.92059
[13] Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York. · Zbl 0997.92505
[14] Dushoff, J., Wenzhang, H., Castillo-Chavez, C., 1998. Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol. 36, 227–248. · Zbl 0917.92022 · doi:10.1007/s002850050099
[15] Fleming, W.H., Rishel, R.W., 1975. Deterministic and Stochastic Optimal Control. Springer, New York. · Zbl 0323.49001
[16] Gourley, S.A., Liu, L.R., Wu, J., 2007. Some vector borne diseases with structured host populations: Extinction and spatial spread. SIAM J. Appl. Math. 67, 408–433. · Zbl 1123.35083 · doi:10.1137/050648717
[17] Huhn, D.G., James, J.S., Montgomery, P.S., Dworkin, S.M., 2003. West Nile virus in the United States: an update on an emerging infectious disease. Am. Fam. Phys. 68(4), 653–675.
[18] Jang, S.R.-J., 2007. On a discrete West Nile epidemic model. Comput. Appl. Math. 26, 397–414. · doi:10.1590/S0101-82052007000300005
[19] Joshi, H.R., 2003. Optimal control of HIV immunology model. Optim. Control Appl. Methods 23(4), 199–213. · Zbl 1072.92509 · doi:10.1002/oca.710
[20] Jianga, J., Qiub, Z., Wu, J., Zhu, H., 2009. Threshold conditions for West Nile virus outbreaks. Bull. Math. Biol. doi: 10.1007/s11538-008-9374-6 · Zbl 1163.92036
[21] Jung, E., Lenhart, S., Feng, Z., 2002. Optimal control of treatments in a two-strain tuberculosis model. Discrete Contin. Dyn. Syst. Ser. 2(4), 473–482. · Zbl 1005.92018 · doi:10.3934/dcdsb.2002.2.473
[22] Kenkre, V.M., Parmenter, R.R., Peixoto, I.D., Sadasiv, L., 2006. A theoretic framework for the analysis of the West Nile virus epidemic. Comput. Math. 42, 313–324. · Zbl 1080.92057
[23] Kilpatric, A.M., Kramer, L.D., Jones, M.J., Marra, P.P., Daszak, P., Fonseca, D.M., 2007. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am. J. Trop. Med. Hyg. 77(4), 667–671.
[24] Kirschner, E.D., Lenhart, S., Serbin, S., 1997. Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775–792. · Zbl 0876.92016 · doi:10.1007/s002850050076
[25] Lenhart, S., Workman, J.T., 2007. Optimal Control Applied to Biological Models. Mathematical and Computational Biology Series. Chapman & Hall/CRC Press, London/Boca Raton. · Zbl 1291.92010
[26] Lewis, M., Renclawowicz, J., van den Driessche, P., 2006a. Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 66, 3–23. · Zbl 1334.92414 · doi:10.1007/s11538-005-9018-z
[27] Lewis, M.A., Renclawowicz, J., van den Driesssche, P., Wonham, M., 2006b. A comparison of continuous and discrete-time West Nile virus models. Bull. Math. Biol. 68, 491–509. · Zbl 1334.92413 · doi:10.1007/s11538-005-9039-7
[28] Lukes, D.L., 1982. Differential Equations: Classical to Controlled. Mathematics in Science and Engineering. Academic Press, New York. · Zbl 0509.34003
[29] NGwa, G.A., Shu, W.S., 2000. A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 32, 747–763. · Zbl 0998.92035 · doi:10.1016/S0895-7177(00)00169-2
[30] Nosal, B., Pellizzari, R., 2003. West Nile virus. CMAJ 168(11), 1443–1444.
[31] Ontero, J., Anderson, F., Andreadis, T.G., Main, A.J., Kline, D.L., 2004. Prevalence of West Nile virus in tree canopy-in habiting Culex pipiens and associated mosquitoes. Am. J. Trop. Med. Hyg. 71(1), 112–119.
[32] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F., 1986. The Mathematical Theory of Optimal Process, vol. 4. Gordon & Breach, New York.
[33] Peterson, L.R., Marfin, A.A., 2002. West Nile virus: a primer for the clinician. Ann. Intern. Med. 137(3), 173–179.
[34] Sharomi, O., Podder, C.N., Gumel, A.B., Elbasha, E.H., Watmough, J., 2007. Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Math. Biosci. 210, 436–463. · Zbl 1134.92026 · doi:10.1016/j.mbs.2007.05.012
[35] Thomas, D.M., Urena, B., 2001. A model describing the evolution of West Nile-like encephalitis in New York city. Math. Comput. Model. 34, 771–781. · Zbl 0999.92025 · doi:10.1016/S0895-7177(01)00098-X
[36] van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48. · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[37] Wonham, M.J., de-Camino-Beck, T., Lewis, M.A., 2004. An epidemiological model for West Nile virus: Invasion analysis and control applications. Proc. R. Soc. Lond. 271, 501–507. · doi:10.1098/rspb.2003.2608
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.