×

Combinatorics of compactified universal Jacobians. (English) Zbl 1408.14093

This article deals with the combinatorial structure of the compactified universal Jacobian over \(\overline{\mathcal M}_{g}\), the compactified moduli space of smooth curves of genus \(g\ge 2\), in degrees \(g-1\) and \(g\) and its relation with orientations of stable graphs.
The first section, after a short introduction, recalls the basics of graph theory needed in the following.
The second one studies the functorial behaviour of generalized orientations of graphs with respect to edge-contraction, proving, in particular, the functoriality of the posets of totally cyclic and rooted orientations on a stable graph.
Eventually, the last section applies the graph-theoretic results to the algebro-geometric setting, exhibiting, in particular, a graded stratification of the compactified Jacobian of degree \(g-1\) (respectively \(g\)) of a stable curve of genus \(g\) in terms of totally cyclic (resp. rooted) orientations on the dual graph of the curve.

MSC:

14H10 Families, moduli of curves (algebraic)
14H40 Jacobians, Prym varieties
05C22 Signed and weighted graphs

References:

[1] Abramovich, D.; Caporaso, L.; Payne, S., The tropicalization of the moduli space of curves, Ann. Sci. Éc. Norm. Supér., 48, 4, 765-809 (2015) · Zbl 1410.14049
[2] Abreu, A.; Pacini, M., The universal tropical Jacobian and the skeleton of the Esteves’ universal Jacobian (2018) · Zbl 1453.14082
[3] Alexeev, V., Compactified Jacobians and Torelli map, Publ. RIMS, Kyoto Univ., 40, 1241-1265 (2004) · Zbl 1079.14019
[4] An, Y.; Baker, M.; Kuperberg, G.; Shokrieh, F., Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem, Forum Math. Sigma, 2-24 (2014) · Zbl 1306.05013
[5] Arbarello, E.; Cornalba, M.; Griffiths, P. A., Geometry of Algebraic Curves, Volume II, Grundlehren der Mathematischen Wissenschaften, vol. 268 (2011), Springer: Springer Heidelberg, With a contribution by Joseph Daniel Harris · Zbl 1235.14002
[6] Backman, S., Riemann-Roch theory for graph orientations, Adv. Math., 309, 655-691 (2017) · Zbl 1355.05140
[7] Baker, M.; Payne, S.; Rabinoff, J., Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom., 3, 1, 63-105 (2016) · Zbl 1470.14124
[8] Baker, M.; Rabinoff, J., The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves, Int. Math. Res. Not., 16, 7436-7472 (2015) · Zbl 1332.14038
[9] Beauville, A., Prym varieties and the Schottky problem, Invent. Math., 41, 149-196 (1977) · Zbl 0333.14013
[10] Berkovich, V., Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, vol. 33 (1990), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0715.14013
[11] Bernardi, O., Tutte polynomial, subgraphs, orientations and sandpile model: new connections, Electron. J. Combin., 15, 1-52 (2008)
[12] Brannetti, S.; Melo, M.; Viviani, F., On the tropical Torelli map, Adv. Math., 226, 3, 2546-2586 (2011) · Zbl 1218.14056
[13] Caporaso, L., A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc., 7, 3, 589-660 (1994) · Zbl 0827.14014
[14] Caporaso, L., Néron models and compactified Picard schemes over the moduli stack of stable curves, Amer. J. Math., 130, 1, 1-47 (2008) · Zbl 1155.14023
[15] Caporaso, L., Algebraic and tropical curves: comparing their moduli spaces, (Farkas, G.; Morrison, I., Handbook of Moduli, Vol. I. Handbook of Moduli, Vol. I, Advanced Lectures in Mathematics, vol. XXIV (2013), International Press of Boston), 119-160 · Zbl 1322.14045
[16] Caporaso, L.; Viviani, F., Torelli theorem for graphs and tropical curves, Duke Math. J., 153, 1, 129-171 (2010) · Zbl 1200.14025
[17] Caporaso, L.; Viviani, F., Torelli theorem for stable curves, J. Eur. Math. Soc., 13, 5, 1289-1329 (2011) · Zbl 1230.14037
[18] Cavalieri, R.; Markwig, H.; Ranganathan, D., Tropicalizing the space of admissible covers, Math. Ann., 364, 3-4, 1275-1313 (2016) · Zbl 1373.14064
[19] Christ, K., Orientations, Break Divisors and Compactified Jacobians (2018), Roma Tre University, PhD thesis
[20] Esteves, E., Compactifying the relative Jacobian over families of reduced curves, Trans. Amer. Math. Soc., 353, 8, 3045-3095 (2001), (electronic) · Zbl 0974.14009
[21] Gioan, E., Enumerating degree sequences in digraphs and a cycle-cocycle reversal system, European J. Combin., 28, 1351-1366 (2007) · Zbl 1114.05024
[22] Hakimi, S., On the degrees of the vertices of a directed graph, J. Franklin Inst., 279, 260-308 (1965) · Zbl 0173.26404
[23] Mikhalkin, G.; Zharkov, I., Tropical curves, their Jacobians and theta functions, (Curves and Abelian Varieties (2008)), 203-230 · Zbl 1152.14028
[24] Oda, T.; Seshadri, C. S., Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc., 253, 1-90 (1979) · Zbl 0418.14019
[25] Shen, J., Break Divisors and Compactified Jacobians (2017), Yale University, PhD thesis
[26] Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. Inst. Hautes Études Sci., 79, 47-129 (1994) · Zbl 0891.14005
[27] Thuillier, A., Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math., 123, 4, 381-451 (2007) · Zbl 1134.14018
[28] Tyomkin, I., Tropical geometry and correspondence theorems via toric stacks, Math. Ann., 353, 3, 945-995 (2012) · Zbl 1272.14045
[29] Viviani, F., Tropicalizing vs. compactifying the Torelli morphism, (Tropical and Non-Archimedean Geometry. Tropical and Non-Archimedean Geometry, Contemp. Math., vol. 605 (2013), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 181-210 · Zbl 1320.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.