×

Dirac neutralinos and electroweak scalar bosons of \(N = 1/N = 2\) hybrid supersymmetry at colliders. (English) Zbl 1291.81434

Summary: In the \(N = 1\) supersymmetric extension of the Standard Model, neutralinos associated in supermultiplets with the neutral electroweak gauge and Higgs bosons are, as well as gluinos, Majorana fermions. They can be paired with the Majorana fermions of novel gaugino/scalar supermultiplets, as suggested by extended \(N = 2\) supersymmetry, to Dirac particles. Matter fields are not extended beyond the standard \(N = 1\) supermultiplets in \(N = 1/N = 2\) hybrid supersymmetry to preserve the chiral character of the theory. Complementing earlier analyses in the color sector, central elements of such an electroweak scenario are analyzed in the present study. The decay properties of the Dirac fermions \(\tilde{\chi}_{D}\) and of the scalar bosons \(\sigma\) are worked out, and the single and pair production-channels of the new particles are described for proton collisions at the LHC, and electron/positron and \(\gamma \gamma\) collisions at linear colliders. Special attention is paid to modifications of the Higgs sector, identified with an \(N = 2\) hypermultiplet, by the mixing with the novel electroweak scalar sector.

MSC:

81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
81U35 Inelastic and multichannel quantum scattering
81U99 Quantum scattering theory

References:

[1] Yu.A. Golfand and E.P. Likhtman, Extension of the algebra of Poincare group generators and violation of p invariance, JETP Lett.13 (1971) 3214 [Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452] [SPIRES].
[2] J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys.B 70 (1974) 39 [SPIRES]. · doi:10.1016/0550-3213(74)90355-1
[3] H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept.110 (1984) 1 [SPIRES]. · doi:10.1016/0370-1573(84)90008-5
[4] H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the Standard Model, Phys. Rept.117 (1985) 75 [SPIRES]. · doi:10.1016/0370-1573(85)90051-1
[5] M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: an account of four-dimensional N=1 supersymmetry in high energy physics, World Scientific, Hackensack, U.S.A. (2004) pg. 555 [SPIRES].
[6] P. Binetruy, Supersymmetry: theory, experiment and cosmology, Oxford University Press, Oxford, U.K. (2006) pg. 520 [SPIRES]. · Zbl 1123.81005
[7] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992) pg. 259 [SPIRES].
[8] P. Fayet, Fermi-Bose hypersymmetry, Nucl. Phys.B 113 (1976) 135 [SPIRES]. · doi:10.1016/0550-3213(76)90458-2
[9] P. Fayet, N = 2 extended supersymmetric guts: gauge boson/higgs boson unification, mass spectrum and central charges, Nucl. Phys.B 246 (1984) 89 [SPIRES]. · doi:10.1016/0550-3213(84)90116-0
[10] F. del Aguila et al., Low-energy models with two supersymmetries, Nucl. Phys.B 250 (1985) 225 [SPIRES].
[11] L. Girardello, M. Porrati and A. Zaffaroni, Spontaneously broken N = 2 supergravity without light mirror fermions, Nucl. Phys.B 505 (1997) 272 [hep-th/9704163] [SPIRES]. · Zbl 0925.83109 · doi:10.1016/S0550-3213(97)00467-7
[12] L. Álvarez-Gaumé and S.F. Hassan, Introduction to S-duality in N = 2 supersymmetric gauge theories: A pedagogical review of the work of Seiberg and Witten, Fortsch. Phys.45 (1997) 159 [hep-th/9701069] [SPIRES]. · Zbl 1052.81623 · doi:10.1002/prop.2190450302
[13] M.M. Nojiri and M. Takeuchi, The study of sqLsqLproduction at LHC in the l±l±channel and sensitivity to other models, Phys. Rev.D 76 (2007) 015009 [hep-ph/0701190] [SPIRES].
[14] S.Y. Choi, M. Drees, A. Freitas and P.M. Zerwas, Testing the majorana nature of gluinos and neutralinos, Phys. Rev.D 78 (2008) 095007 [arXiv:0808.2410] [SPIRES].
[15] M. Krämer, E. Popenda, M. Spira and P.M. Zerwas, Gluino polarization at the LHC, Phys. Rev.D 80 (2009) 055002 [arXiv:0902.3795] [SPIRES].
[16] S.Y. Choi et al., Color-Octet scalars of N = 2 supersymmetry at the LHC, Phys. Lett.B 672 (2009) 246 [arXiv:0812.3586] [SPIRES].
[17] S.Y. Choi et al., Color-octet scalars at the LHC, Acta Phys. Polon.B 40 (2009) 1947 [arXiv:0902.4706] [SPIRES].
[18] T. Plehn and T.M.P. Tait, Seeking sgluons, J. Phys.G 36 (2009) 075001 [arXiv:0810.3919] [SPIRES].
[19] K. Benakli and C. Moura, A model for dirac and majorana gaugino masses, in M.M. Nojiri et al., Physics beyond the Standard Model: supersymmetry, arXiv:0802.3672 [SPIRES].
[20] K. Benakli and M.D. Goodsell, Dirac gauginos, gauge mediation and unification, 1003.4957 [SPIRES]. · Zbl 1206.81128
[21] L.J. Hall and L. Randall, U(1)-R symmetric supersymmetry, Nucl. Phys.B 352 (1991) 289 [SPIRES]. · doi:10.1016/0550-3213(91)90444-3
[22] L. Randall and N. Rius, The minimal U(1)-R symmetric model revisited, Phys. Lett.B 286 (1992) 299 [SPIRES].
[23] G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev.D 78 (2008) 055010 [arXiv:0712.2039] [SPIRES].
[24] A.E. Blechman and S.-P. Ng, QCD corrections to K-Kbar mixing in R-symmetric supersymmetric models, JHEP06 (2008) 043 [arXiv:0803.3811] [SPIRES]. · doi:10.1088/1126-6708/2008/06/043
[25] C.P. Burgess, M. Trott and S. Zuberi, Light Octet scalars, a heavy higgs and minimal flavour violation, JHEP09 (2009) 082 [arXiv:0907.2696] [SPIRES]. · doi:10.1088/1126-6708/2009/09/082
[26] N. Polonsky and S. Su, More corrections to the Higgs mass in supersymmetry, Phys. Lett.B 508 (2001) 103 [hep-ph/0010113] [SPIRES]. · Zbl 0977.81149
[27] G. Bélanger, K. Benakli, M. Goodsell, C. Moura and A. Pukhov, Dark matter with Dirac and majorana gaugino masses, JCAP08 (2009) 027 [arXiv:0905.1043] [SPIRES].
[28] E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP02 (2009) 026 [arXiv:0812.0308] [SPIRES].
[29] K. Hsieh, Pseudo-Dirac bino dark matter, Phys. Rev.D 77 (2008) 015004 [arXiv:0708.3970] [SPIRES].
[30] E.J. Chun, J.-C. Park and S. Scopel, Dirac gaugino as leptophilic dark matter, JCAP02 (2010) 015 [arXiv:0911.5273] [SPIRES].
[31] P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP08 (2002) 035 [hep-ph/0206096] [SPIRES]. · doi:10.1088/1126-6708/2002/08/035
[32] I. Antoniadis, K. Benakli, A. Delgado and M. Quir´os, A new gauge mediation theory, Adv. Stud. Theor. Phys.2 (2008) 645 [hep-ph/0610265] [SPIRES].
[33] K. Benakli and M.D. Goodsell, Dirac gauginos and kinetic mixing, Nucl. Phys.B 830 (2010) 315 [arXiv:0909.0017] [SPIRES]. · doi:10.1016/j.nuclphysb.2010.01.003
[34] Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett.B 667 (2008) 1 [SPIRES].
[35] S.Y. Choi, H.E. Haber, J. Kalinowski and P.M. Zerwas, The neutralino sector in the U(1)-extended supersymmetric standard model, Nucl. Phys.B 778 (2007) 85 [hep-ph/0612218] [SPIRES]. · doi:10.1016/j.nuclphysb.2007.04.019
[36] WMAP collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: cosmological interpretation, Astrophys. J. Suppl.180 (2009) 330 [arXiv:0803.0547] [SPIRES]. · doi:10.1088/0067-0049/180/2/330
[37] WMAP collaboration, J. Dunkley et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and parameters from the WMAP data, Astrophys. J. Suppl.180 (2009) 306 [arXiv:0803.0586] [SPIRES]. · doi:10.1088/0067-0049/180/2/306
[38] A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the large hadron collider, 1004.2732 [SPIRES].
[39] A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e+e−and e−e−linear colliders, Eur. Phys. J.C 34 (2004) 487 [hep-ph/0310182] [SPIRES].
[40] A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e+e−and e−e−linear colliders. (Addendum), Eur. Phys. J.C 40 (2005) 435 [hep-ph/0408341] [SPIRES]. · doi:10.1140/epjc/s2005-02148-6
[41] A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e+e−and e−e−linear colliders. (Addendum), Eur. Phys. J.C 40 (2005) 435 [hep-ph/0408341] [SPIRES]. · doi:10.1016/j.nuclphysb.2003.09.055
[42] M.E. Peskin, Systematics of slepton production in e+e−and e−e−collisions, Int. J. Mod. Phys.A 13 (1998) 2299 [hep-ph/9803279] [SPIRES].
[43] S.Y. Choi, M. Drees and B. Gaissmaier, Systematic study of the impact of CP-violating phases of the MSSM on leptonic high-energy observables, Phys. Rev.D 70 (2004) 014010 [hep-ph/0403054] [SPIRES].
[44] J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J.C 46 (2006) 43 [hep-ph/0511344] [SPIRES]. · doi:10.1140/epjc/s2005-02460-1
[45] S.Y. Choi et al., Reconstructing the chargino system at e+e−linear colliders, Eur. Phys. J.C 14 (2000) 535 [hep-ph/0002033] [SPIRES]. · doi:10.1007/s100520000365
[46] S.Y. Choi, J. Kalinowski, G.A. Moortgat-Pick and P.M. Zerwas, Analysis of the neutralino system in supersymmetric theories, Eur. Phys. J.C 22 (2001) 563 [Addendum ibid.C 23 (2002) 769] [hep-ph/0108117] [SPIRES]. · doi:10.1007/s100520100808
[47] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP07 (2002) 012 [hep-ph/0201195] [SPIRES]. · doi:10.1088/1126-6708/2002/07/012
[48] M.M. Muhlleitner and P.M. Zerwas, Elements of physics with a photon collider, Acta Phys. Polon.B 37 (2006) 1021 [hep-ph/0511339] [SPIRES].
[49] D.M. Asner, J.B. Gronberg and J.F. Gunion, Detecting and studying Higgs bosons in two-photon collisions at a linear collider, Phys. Rev.D 67 (2003) 035009 [hep-ph/0110320] [SPIRES].
[50] S.Y. Choi and H.E. Haber, The mathematics of fermion mass diagonalization, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.