×

Multi-scale ground penetrating radar full waveform inversion with hybrid Tikhonov and total-variation regularization for different geometric structure. (English) Zbl 1542.86003

Summary: Full waveform inversion (FWI) is a high-resolution technique to estimate the parameters of dielectric permittivity \((\epsilon)\) and electrical conductivity \((\sigma)\) and identify the structure of the subsurface for Ground Penetrating Radar (GPR) application. However, permittivity and conductivity parameters can be coupled in bi-parameter GPR inversion. This coupling effect leads to the crosstalk in the FWI result. To solve this problem, we propose a novel approach to use the multi-scale FWI with the hybrid regularization method, which combines Tikhonov and total-variation (TV) regularizers that simultaneously invert the \(\epsilon\) and the \(\sigma\) parameters, which improve the inversion accuracy and reduce the crosstalk effect. The multi-scale strategy uses the Wiener filtering to process the GPR data in different frequency ranges. Then, the low frequencies signal updates the bottom part and subsequently increases the frequencies to invert for the shallow areas. The Tikhonov regularization stabilizes the reconstruction of the smoothly varying background part. In contrast, Total Variation (TV) regularization can recover the large contrasts associated with the LNAPL model. The new Tikhonov-TV (TT) regularization can mitigate the crosstalk caused by the parameter coupling effect. Numerical tests with typical GPR models demonstrate that the proposed multi-scale TT-FWI strategy can effectively eliminate the crosstalk and improve the reconstruction accuracy when the model parameters have a different structure.

MSC:

86-08 Computational methods for problems pertaining to geophysics
65K05 Numerical mathematical programming methods
76Q05 Hydro- and aero-acoustics
Full Text: DOI

References:

[1] S. Busch, J. Van Kruk and J. Bikowski, Quantitative permittivity and conductivity estimation using full-waveform inversion of on-ground GPR data, Geophys. 77 (2012), 79-91.
[2] S. Busch, J. Van Kruk and H. Vereecken, Improved characterization of fine texture soils using on-ground GPR full-waveform inversion, IEEE Trans. Geosci. Remote Sens. 52 (2014), 3947-3959.
[3] S. Busch, L. Weihermller, J. A. Huisman, C. M. Steelman, A. L. Endres, H. Vereecken and J. Van der Kruk, Coupled hydrogeophysical inversion of time lapse surface GPR data to estimate hydraulic properties of a layered sub surface, Water Resources Res. 49 (2013), 8480-8494.
[4] J. Carcione, Wave propagation in anisotropic, anelastic, Elsevier Sci. Technol. Wave Fields Real Media 51 (2007), 538-366.
[5] J. Carcione and F. Cavallini, On the acoustic-electromagnetic analogy, Wave Motion 121 (1995), 149-162. · Zbl 0968.76586
[6] N. Cassidy, Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: Practical implications for hydrological studies, J. Contaminant Hydrol. 94 (2007), 49-75.
[7] K. S. Cordua, T. M. Hansen and K. Mosegaard, Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information, Geophys. 77 (2012), H19-H31.
[8] A. De Coster, A. Van Der Wielen, C. Gré goire and S. Lambot, Evaluation of pavement layer thicknesses using GPR: A comparison between full-wave inversion and the straight-ray method, Construction Building Mater. 168 (2018), 91-104.
[9] J. Ernst, H. Maurer, A. Green and K. Holliger, Full-waveform inversion of crosshole radar data based on 2-D finite-difference time-domain solutions of Maxwell’s equations, IEEE Trans. Geosci. Remote Sens. 45 (2007), 2807-2828.
[10] D. Feng and X. Wang, Fast ground penetrating radar double-parameter inversion based on GPU-parallel by time-domain full waveform optimization conjugate gradient method, Chinese J. Geophys. 61 (2018), 4647-4659.
[11] X. Feng, Q. Ren and C. Liu, Quantitative imaging for civil engineering by joint full waveform inversion of surface-based GPR and shallow seismic reflection data, Construction Building Mater. 154 (2017), 1173-1182.
[12] A. Gholami and S. M. Hosseini, A balanced combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals, Signal Process. 93 (2013), 1945-1960.
[13] I. Giannakis, A. Giannopoulos, C. Warren and A. Sofroniou, Fractal-constrained crosshole/borehole-to-surface full-waveform inversion for hydrogeological applications using ground-penetrating radar, IEEE Trans. Geosci. Remote Sens. 60 (2022), 1-10.
[14] E. Gloaguen, M. Chouteau, D. Marcotte and R. Chapuis, Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data, Water Resources Res. 47 (2001), 135-152.
[15] N. Huai, Z. Zeng, J. Li, Y. W. Yan and L. Qi, Model-based layer stripping FWI with a stepped inversion sequence for GPR data, Geophys. J. Int. 218 (2019), 1032-1043.
[16] J. Irving and R. Knight, Numerical modeling of ground-penetrating radar in 2-D using MATLAB, Comput. Geosci. 32 (2006), 974-981.
[17] J. Irving and R. Knight, Improving crosshole radar velocity tomograms: New approach to incorporating high-angle travel time data, Geophys. 72 (2007), 31-41.
[18] S. Jaumann and K. Roth, Soil hydraulic material properties and layered architecture from time-lapse GPR, Hydrol. Earth Syst. Sci. 22 (2018), 2551-2573.
[19] T. C. Johnson, P. S. Routh and W. Barrash, A field comparison of Fresnel zone and ray-based GPR attenuation-difference tomography for time-lapse imaging of electrically anomalous tracer or contaminant plumes Fresnel zone GPR tomography, Geophys. 72 (2007), 21-29.
[20] A. Klotzsche, J. van der Kruk, G. A. Meles and H. Vereecken, Crosshole GPR full-waveform inversion of waveguides acting as preferential flow paths within aquifer systems, Geophys. 77 (2012), H57-H62.
[21] S. Lambot, E. C. Slob, J. Rhebergen, O. Lopera, K. Z. Jadoon and H. Vereecken, Remote estimation of the hydraulic properties of asand using full-waveform integrated hydrogeophysical inversion of time-lapse, offground GPR data, Vadose Zone 40 (2004), Article ID W04205.
[22] S. Lambot, E. C. Slob, I. Van den Bosch, B. Stockbroeckx, B. Scheers and M. Vanclooster, Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain, Water Resources Res. 8 (2009), 743-754.
[23] F. Lavoué, R. Brossier and L. étivier, Two-dimensional permittivity and conductivity imaging by full waveform inversion of multi-offset GPR data: Afrequency-domain quasi-Newton approach, Geophys. J. Int. 197 (2014), 248-268.
[24] J. Li, L. Bai and H. Liu, Numerical verification of full waveform inversion for the Chang’E-5 lunar regolith penetrating array radar, IEEE Trans. Geosci. Remote Sens. 60 (2022), 1-10.
[25] J. Li, Z. Zeng, L. Huang and F. Liu, GPR simulation based on complex frequency shifted recursive integration PML boundary of 3D high order FDTD, Chinese J. Geophys. 49 (2012), 121-130.
[26] J. Li, Z. Zeng, L. Huang and F. S. Wu, Study of three dimension high-order FDTD simulation for GPR, Chinese J. Geophys. 54 (2010), 1612-1621.
[27] J. Li, Z. Feng and G. T. Schuster, Wave-equation dispersion inversion, Geophys. J. Int. 208 (2017), 1567-1578.
[28] N. Linde, A. Binley, A. Tryggvason, L. B. Pedersen and A. Revil, Improved hydrogeophysical characterization using joint inversion of crosshole electrical resistance and ground penetrating radar traveltime data, Water Resources Res. 49 (2006), 8480-8494.
[29] H. Liu, Z. Long, B. Tian, F. Han, G. Fang and Q. Liu, Two-dimensional reverse-time migration applied to GPR with a 3D-to-2D data conversion, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 10 (2017), 4314-4320.
[30] Y. Luo and G. T. Schuster, Wave-equation traveltime inversion, Geophys. 56 (1991), 645-653.
[31] G. A. Meles, S. A. Greenhalgh and J. Van Kruk, Taming the non-linearity problem in GPR full-waveform inversion for high contrast media, J. Appl. Geophys. 78 (2012), 31-43.
[32] G. A. Meles, J. Van Kruk and S. A. Greenhalgh, A new vector waveform inversion algorithm for simultaneous updating of conductivity and permittivity parameters from combination crosshole/borehole-to-surface GPR data, IEEE Trans. Geosci. Remote Sens. 48 (2010), 3391-3407.
[33] P. Mora, Nonlinear two-dimensional elastic inversion of multioffset seismic data, Geophys. 52 (1987), 1211-1228.
[34] J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 2006. · Zbl 1104.65059
[35] Q. Ren, Inverts permittivity and conductivity with structural constraint in GPR FWI based on truncated Newton method, J. Appl. Geophys. 151 (2018), 186-193.
[36] L. Sirgue and R. G. Pratt, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophys. 69 (2014), 231-248.
[37] C. Steelman and A. L. Endres, Assessing vertical soil moisturedynamics using multi-frequency GPR common-midpoint soundings, J. Hydrology 436 (2012), 51-66.
[38] R. Streich and J. Van der Kruk, Accurate imaging of multicomponent GPR data based on exact radiation patterns, IEEE Trans. Geosci. Remote Sens. 45 (2007), 93-103.
[39] A. Tarantola, A strategy for nonlinear elastic inversion of seismic reflection data, Geophys. 51 (1986), 1893-1903.
[40] G. Topp, J. Davis and A. Annan, Electromagnetic determination of soil water content measurements in coaxial transmission-lines, Water Resources Res. 16 (1980), 574-582.
[41] J. Virieux and S. Operto, An overview of full-waveform inversion in exploration, Geophys. 74 (2009), 1-26.
[42] X. Wang and D. Feng, Multiparameter full-waveform inversion of 3-D on-ground gpr with a modified total variation regularization scheme, IEEE Trans. Geosci. Remote Sens 18 (2021), no. 3, 466-470.
[43] X. Yang, A. Klotzsche, G. Meles, H. Vereecken and J. Van der Kruk, Improvements in crosshole GPR full-waveform inversion and application on data measured at the Boise hydrogeophysics research site, J. Appl. Geophys. 78 (2013), 114-124.
[44] Y. Yu, J. A. Huisman, A. Klotzsche, H. Vereecken and L. Weihermüller, Coupled full-waveform inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic parameters: A synthetic study, J. Hydrol. 610 (2022), Article ID 127817.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.