×

Upper metric mean dimensions with potential on subsets. (English) Zbl 1457.49026

Summary: In this paper, we introduce the notion of upper metric mean dimension with potential on any subset (not necessarily compact or invariant) via Carathéodory-Pesin structures. We discuss several possible versions of upper measure-theoretic mean dimensions with potential and find conditions to make these notions coincide. In particular, we present a corresponding variational principle and an inverse variational principle.

MSC:

49N45 Inverse problems in optimal control
Full Text: DOI

References:

[1] Acevedo J M and Guevara C P 2019 Properties of mean dimension and metric mean dimension coming from the topological entropy (arXiv:1905.13299v3)
[2] Barreira L M 1996 A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems Ergod. Theory Dyn. Syst.16 871-927 · Zbl 0862.58042 · doi:10.1017/s0143385700010117
[3] Barreira L 2012 Ergodic Theory, Hyperbolic Dynamics and Dimension Theory (Heidelberg: Springer) · Zbl 1262.37001 · doi:10.1007/978-3-642-28090-0
[4] Bowen R 1973 Topological entropy for noncompact sets Trans. Am. Math. Soc.184 125 · Zbl 0274.54030 · doi:10.1090/s0002-9947-1973-0338317-x
[5] Cao Y, Feng D-J, Feng D-J and Huang W 2008 The thermodynamic formalism for sub-additive potentials Discrete Contin. Dyn. Syst.20 639-57 · Zbl 1140.37319 · doi:10.3934/dcds.2008.20.639
[6] Cao Y, Hu H and Zhao Y 2013 Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic measure Ergod. Theory Dyn. Syst.33 831-50 · Zbl 1331.37007 · doi:10.1017/s0143385712000090
[7] Coornaert M 2015 Topological Dimension and Dynamical Systems (Berlin: Springer) · Zbl 1326.54001 · doi:10.1007/978-3-319-19794-4
[8] Dou D 2017 Minimal subshifts of arbitrary mean topological dimension Discrete Contin. Dyn. Syst.37 1411-24 · Zbl 1430.37018 · doi:10.3934/dcds.2017058
[9] Feng D-J and Huang W 2016 Variational principle for weighted topological pressure J. Math. Appl.106 411-52 · Zbl 1360.37080 · doi:10.1016/j.matpur.2016.02.016
[10] Gutman Y 2017 Embedding topological dynamical systems with periodic points in cubical shifts Ergod. Theory Dyn. Syst.37 512-38 · Zbl 1435.37034 · doi:10.1017/etds.2015.40
[11] Gutman Y, Lindenstrauss E and Tsukamoto M 2016 Mean dimension of Zk-actions Geom. Funct. Anal.26 778-817 · Zbl 1378.37056 · doi:10.1007/s00039-016-0372-9
[12] Gromov M 1999 Topological invariants of dynamical systems and spaces of holomorphic maps I. Math. Phys. Anal. Geom.2 323-415 · Zbl 1160.37322 · doi:10.1023/A:1009841100168
[13] Katok A 1980 Lyapunov exponents, entropy and periodic orbits for diffeomorphisms Publ. Math. IHÉS51 137-73 · Zbl 0445.58015 · doi:10.1007/bf02684777
[14] Li Z-M Weighted upper mean dimension (pre-print)
[15] Lindenstrauss E 1999 Mean dimension, small entropy factors and an embedding theorem Publ. Math. IHÉS89 227-62 · Zbl 0978.54027 · doi:10.1007/bf02698858
[16] Lindenstrauss E and Tsukamoto M 2018 From rate distortion theory to metric mean dimension: variational principle IEEE Trans. Inf. Theory64 3590-609 · Zbl 1395.94215 · doi:10.1109/tit.2018.2806219
[17] Lindenstrauss E and Tsukamoto M 2019 Double variational principle for mean dimension Geom. Funct. Anal.29 1048-109 · Zbl 1433.37025 · doi:10.1007/s00039-019-00501-8
[18] Lindenstrauss E and Weiss B 2000 Mean topological dimension Isr. J. Math.115 1-24 · Zbl 0978.54026 · doi:10.1007/bf02810577
[19] Ma X, Yang J and Chen E 2019 Mean topological dimension for random bundle transformations Ergod. Theory Dyn. Syst.39 1020-41 · Zbl 1409.37033 · doi:10.1017/etds.2017.51
[20] Meyerovitch T and Tsukamoto M 2019 Expansive multiparameter actions and mean dimension Trans. Am. Math. Soc.371 7275-99 · Zbl 1419.37023 · doi:10.1090/tran/7588
[21] Pesin Y 1997 Dimension Theory in Dynamical Systems: Contemporary Views and Applications (Chicago, IL: University of Chicago Press) · doi:10.7208/chicago/9780226662237.001.0001
[22] Pesin Y B and Pitskel’ B S 1984 Topological pressure and the variational principle for noncompact sets Funct. Anal. Appl.18 307-18 · Zbl 0567.54027 · doi:10.1007/bf01083692
[23] Rodrigues F B and Acevedo J M 2019 Mean dimension and metric mean dimension for non-autonomous dynamical systems (arXiv:1905.05367v1)
[24] Ruelle D 1973 Statistical mechanics on a compact set with Zv action satisfying expansiveness and specification Trans. Am. Math. Soc.185 237-51 · Zbl 0278.28012 · doi:10.2307/1996437
[25] Tang D-X, Wu H-Y and Li Z-M 2020 Weighted upper metric mean dimension for amenable group actions Dyn. Syst.35 382-97 · Zbl 1471.37030 · doi:10.1080/14689367.2019.1709047
[26] Tsukamoto M 2020 Double variational principle for mean dimension with potential Adv. Math.361 106935 · Zbl 1436.37032 · doi:10.1016/j.aim.2019.106935
[27] Tsukamoto M 2019 Mean dimension of full shifts Isr. J. Math.230 183-93 · Zbl 1417.37073 · doi:10.1007/s11856-018-1813-y
[28] Velozo A and Velozo R 2017 Rate distortion theory, metric mean dimension and measure theoretic entropy (arXiv:1707.05762)
[29] Viana M and Oliveira K 2016 Foundations of Ergodic Theory vol 2 (Cambridge: Cambridge University Press) · Zbl 1369.37001 · doi:10.1017/CBO9781316422601
[30] Walters P 1982 An Introduction to Ergodic Theory (New York: Springer) · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
[31] Walters P 1975 A variational principle for the pressure of continuous transformations Am. J. Math.97 937-71 · Zbl 0318.28007 · doi:10.2307/2373682
[32] Yano K 1980 A remark on the topological entropy of homeomorphisms Invent. Math.59 215-20 · Zbl 0434.54010 · doi:10.1007/bf01453235
[33] Zhao Y and Cao Y 2009 Measure-theoretic pressure for subadditive potentials Nonlinear Anal. Theory Methods Appl.70 2237-47 · Zbl 1162.37016 · doi:10.1016/j.na.2008.03.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.