×

Presentations of the Roger-Yang generalized skein algebra. (English) Zbl 1481.57025

The Roger-Yang generalized skein algebra is a quantization of the decorated Teichmüller space. Its definition generalizes the construction of the Kauffman bracket skein algebra which was introduced independently by Turaev and Przytycki, based on Kauffman’s skein-theoretic description of the Jones polynomial. The main result in the paper under review is a presentations of the Roger-Yang generalized skein algebras for punctured spheres with an arbitrary number of punctures. Such presentations were known for genus \(0\) with at most three punctures and for genus 1 with \(0\) or \(1\) puncture. At the same time, the authors obtain a new interpretation of the homogeneous coordinate ring of the Grassmannian of planes in terms of skein theory.

MSC:

57K31 Invariants of 3-manifolds (including skein modules, character varieties)
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
57M50 General geometric structures on low-dimensional manifolds

References:

[1] 10.1142/S0218216516500346 · Zbl 1382.57005 · doi:10.1142/S0218216516500346
[2] 10.2140/involve.2016.9.689 · Zbl 1348.57021 · doi:10.2140/involve.2016.9.689
[3] 10.2140/gt.2011.15.1569 · Zbl 1227.57003 · doi:10.2140/gt.2011.15.1569
[4] 10.1007/s000140050032 · Zbl 0907.57010 · doi:10.1007/s000140050032
[5] 10.1007/PL00004727 · Zbl 0932.57016 · doi:10.1007/PL00004727
[6] 10.1142/S0218216599000183 · Zbl 0932.57015 · doi:10.1142/S0218216599000183
[7] 10.2140/agt.2005.5.107 · Zbl 1066.57014 · doi:10.2140/agt.2005.5.107
[8] 10.1090/S0002-9939-99-05043-1 · Zbl 0971.57021 · doi:10.1090/S0002-9939-99-05043-1
[9] 10.1007/s11511-008-0030-7 · Zbl 1263.13023 · doi:10.1007/s11511-008-0030-7
[10] 10.1007/s00222-003-0302-y · Zbl 1054.17024 · doi:10.1007/s00222-003-0302-y
[11] 10.1007/978-1-4757-3849-0 · doi:10.1007/978-1-4757-3849-0
[12] 10.1016/0040-9383(87)90009-7 · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[13] 10.1090/gsm/161 · doi:10.1090/gsm/161
[14] 10.1016/j.jalgebra.2018.08.030 · Zbl 1439.14094 · doi:10.1016/j.jalgebra.2018.08.030
[15] 10.4171/qt/150 · Zbl 1470.57036 · doi:10.4171/qt/150
[16] 10.4171/QT/79 · Zbl 1375.13038 · doi:10.4171/QT/79
[17] 10.1007/BF01223515 · Zbl 0642.32012 · doi:10.1007/BF01223515
[18] ; Przytycki, Bull. Polish Acad. Sci. Math., 39, 91 (1991) · Zbl 0762.57013
[19] ; Przytycki, Kobe J. Math., 16, 45 (1999) · Zbl 0947.57017
[20] 10.1016/S0040-9383(98)00062-7 · Zbl 0958.57011 · doi:10.1016/S0040-9383(98)00062-7
[21] ; Roger, J. Differential Geom., 96, 95 (2014) · Zbl 1290.53080
[22] ; Stanley, Enumerative combinatorics, I. Cambridge Stud. Adv. Math., 49 (2012) · Zbl 1247.05003
[23] 10.1007/978-3-7091-4368-1 · doi:10.1007/978-3-7091-4368-1
[24] ; Turaev, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., 167, 79 (1988) · Zbl 0673.57004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.