×

Effects of superimposed hydrostatic pressure on fracture in round bars under tension. (English) Zbl 1183.74246

Summary: The effect of superimposed hydrostatic pressure on fracture in round bars under tension is studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that while the superimposed hydrostatic pressure has no noticeable effect on necking, it increases the fracture strain due to the fact that a superimposed pressure delays or completely eliminates the nucleation, growth and coalescence of microvoids or microcracks. The experimentally observed transition of the fracture surface, from the cup-cone mode under atmospheric pressure to a slant structure under high pressure, is numerically reproduced. It is numerically proved that the superimposed hydrostatic pressure has no effect on necking for a damage-free round bar under tension.

MSC:

74R20 Anelastic fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Ashby, M. F.; Embury, J. D.; Cooksley, S. H.; Teirlinck, D.: Fracture maps with pressure as a variable, Scripta metall. 19, 385-390 (1985)
[2] Besson, J.; Steglich, D.; Brocks, W.: Modeling of crack growth in round bars and plane strain specimens, Int. J. Solids struct. 38, 8259-8284 (2001) · Zbl 1016.74060 · doi:10.1016/S0020-7683(01)00167-6
[3] Bridgman, P. W.: Studies in large plastic flow and fracture – with special emphasis on the effects of hydrostatic pressure, (1952) · Zbl 0049.25606
[4] Brownrigg, A.; Spitzig, W. A.; Richmond, O.; Teirlinck, D.; Embury, J. D.: The influence of hydrostatic pressure on the flow stress and ductility of a spheroidized 1045 steel, Acta metall. 31, 1141-1150 (1983)
[5] Carpentier, D.; Contre, M.: Description of an apparatus allowing mechanical tests under hydrostatic pressure up to 15kilobars, Rev. sci. Instrum. 41, 189-192 (1970)
[6] Chen, B.; Huang, Y.; Liu, C.; Wu, P. D.; Macewen, S. R.: A dilatational plasticity theory for viscoplastic materials, Mech. mater. 36, 679-689 (2004)
[7] Chu, C. C.; Needleman, A.: Void nucleation effects in biaxially stretched sheets, J. eng. Mater. technol. 102, 249-256 (1980)
[8] French, L. E.; Weinrich, P. F.: The influence of hydrostatic pressure on the tensile deformation and fracture of copper, Metall. trans. A 6A, 785-790 (1975)
[9] French, L. E.; Weinrich, P. F.; Weaver, C. W.: Tensile fracture of free machining brass as a function of hydrostatic pressure, Acta metall. 21, 1045-1049 (1973)
[10] Gimple, J.L., Wilkinson, D.S., Embury, J.D., Lewandowski, J.J., 2001. Effect of superimposed pressure on the fracture behaviour of aluminum automotive alloys. In: Das, S.K., Kaufman, J.G., Lienert, T.J. (Eds.), Aluminum 2001 – Proceedings of the TMS 2001, TMS, pp. 17 – 29.
[11] Gurson, A.: Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous ductile media, J. eng. Mater. technol. 99, 2-15 (1977)
[12] Kao, A. S.; Kuhn, H. A.; Richmond, O.; Spitzig, W. A.: Workability of 1045 spheroidized steel under superimposed hydrostatic pressure, Metall. trans. A 20A, 1735-1741 (1989)
[13] Kao, A. S.; Kuhn, H. A.; Richmond, O.; Spitzig, W. A.: Tensile fracture and fractographic analysis of 1045 spheroidized steel under hydrostatic pressure, J. mater. Res. 5, 83-91 (1990)
[14] Korbel, A.; Raghunathan, V. S.; Teirlinck, D.; Spitzig, W. A.; Richmond, O.; Embury, J. D.: A structural study of the influence of pressure on shear band formation, Acta metall. 32, 511-519 (1984)
[15] Lewandowski, J. J.; Lowhaphandu, P.: Effects of hydrostatic pressure on mechanical behaviour and deformation processing of materials, Int. mater. Rev. 43, 145-187 (1998)
[16] Li, H.; Pugh, D.; Green, D.: The effect of hydrostatic pressure on the plastic deformation and fracture of metals, Proc. inst. Mech. eng. 179, 415-429 (1964 – 1965)
[17] Liu, D. S.; Lewandowski, J. J.: The effects of superimposed hydrostatic pressure on deformation and fracture. Part I. Monolithic 6061 aluminum, Metall. trans. A 24A, 601-608 (1993)
[18] Mear, M. E.; Hutchinson, J. W.: Influence of yield surface curvature on flow localization in dilatants plasticity, Mech. mater. 4, 395-407 (1985)
[19] Nahshon, K.; Hutchinson, J. W.: Modification of the Gurson model for shear failure, Eur. J. Mech. A 27, 1-17 (2008) · Zbl 1129.74041 · doi:10.1016/j.euromechsol.2007.08.002
[20] Sauer, J. A.; Mears, D. R.; Pae, K. D.: Effects of hydrostatic pressure on the mechanical behaviour of polytetrafluoroethylene and polycarbonate, Eur. polym. J. 6, 1015-1032 (1970)
[21] Spitzig, W. A.; Richmond, O.: The effect of pressure on the flow stress of metals, Acta metall. 32, 457-463 (1984)
[22] Tvergaard, V.: Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fracture 17, 237-252 (1981)
[23] Tvergaard, V.: On localization in ductile materials containing spherical voids, Int. J. Fracture 18, 389-407 (1982)
[24] Tvergaard, V.: Material failure by void growth to coalescence, Adv. appl. Mech. 27, 83-151 (1990) · Zbl 0728.73058 · doi:10.1016/S0065-2156(08)70195-9
[25] Tvergaard, V.; Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar, Acta metall. 32, 157-169 (1984)
[26] Weinrich, P. F.; French, L. E.: The influence of hydrostatic pressure on the fracture mechanisms of sheet tensile specimens of copper and brass, Acta metall. 24, 317-322 (1976)
[27] Wu, P. D.; Embury, J. D.; Lloyd, D. J.; Huang, Y.; Neale, K. W.: Effects of superimposed hydrostatic pressure on sheet metal formability, Int. J. Plasticity 25, 1711-1725 (2009) · Zbl 1388.74087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.