×

Estimating COVID-19 vaccine protection rates via dynamic epidemiological models – a study of 10 countries. (English) Zbl 07789431

Summary: The real-world performance of vaccines against COVID-19 infections is critically important to counter the pandemics. We propose a varying coefficient stochastic epidemic model to estimate the vaccine protection rates based on the publicly available epidemiological and vaccination data. To tackle the challenges posed by the unobserved state variables, we develop a multistep decentralized estimation procedure that uses different data segments to estimate different parameters. A B-spline structure is used to approximate the underlying infection rates and to facilitate model simulation in obtaining an objective function between the imputed and the simulation-based estimates of the latent state variables, leading to simulation-based estimation of the diagnosis rate using data in the prevaccine period and the vaccine effect parameters using data in the postvaccine periods. The time-varying infection, recovery and death rates are estimated by kernel regressions. We apply the proposed method to analyze the data in ten countries which collectively used eight vaccines. The analysis reveals that the average protection rate of the full vaccination was at least 22% higher than that of the partial vaccination and was largely above the WHO recognized level of 50% before November 20, 2021, including the Delta variant dominated period. The protection rates for the booster vaccine in the Omicron period were also provided.

MSC:

62Pxx Applications of statistics
Full Text: DOI

References:

[1] ALTARAWNEH, H. N., CHEMAITELLY, H., HASAN, M. R. et al. (2022). Protection against the omicron variant from previous SARS-CoV-2 infection. N. Engl. J. Med. 386 1288-1290. PMID: 35139269. Digital Object Identifier: 10.1056/NEJMc2200133 Google Scholar: Lookup Link · doi:10.1056/NEJMc2200133
[2] ANDERSON, R. M. and MAY, R. M. (1982). Population dynamics of human helminth infections: Control by chemotherapy. Nature 297 557-563. Digital Object Identifier: 10.1038/297557a0 Google Scholar: Lookup Link · doi:10.1038/297557a0
[3] AURANEN, K., ARJAS, E., LEINO, T. and TAKALA, A. K. (2000). Transmission of pneumococcal carriage in families: A latent Markov process model for binary longitudinal data. J. Amer. Statist. Assoc. 95 1044-1053. Digital Object Identifier: 10.2307/2669741 Google Scholar: Lookup Link MathSciNet: MR1821713 · Zbl 1008.62106 · doi:10.2307/2669741
[4] BAAKE, E., BAAKE, M., BOCK, H. G. et al. (1992). Fitting ordinary differential equations to chaotic data. Phys. Rev. A 45 5524-5529. Digital Object Identifier: 10.1103/PhysRevA.45.5524 Google Scholar: Lookup Link · doi:10.1103/PhysRevA.45.5524
[5] BAROUCH, D. H. (2022). Covid-19 vaccines - immunity, variants, boosters. N. Engl. J. Med. 387 1011-1020. Digital Object Identifier: 10.1056/NEJMra2206573 Google Scholar: Lookup Link · doi:10.1056/NEJMra2206573
[6] BERNAL, J. L., ANDREWS, N., GOWER, C. et al. (2021). Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N. Engl. J. Med. 385 585-594. Digital Object Identifier: 10.1056/NEJMoa2108891 Google Scholar: Lookup Link · doi:10.1056/NEJMoa2108891
[7] BUITRAGO-GARCIA, D., EGLI-GANY, D., COUNOTTE, M. et al. (2020). Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 17 e1003346. Digital Object Identifier: 10.1371/journal.pmed.1003346 Google Scholar: Lookup Link · doi:10.1371/journal.pmed.1003346
[8] CAI, C., LIU, Y., ZENG, S. et al. (2021a). The efficacy of COVID-19 vaccines against the B.1.617.2 (delta) variant. Mol. Ther. 29 2890-2892. Digital Object Identifier: 10.1016/j.ymthe.2021.09.024 Google Scholar: Lookup Link · doi:10.1016/j.ymthe.2021.09.024
[9] CAI, C., PENG, Y., SHEN, E. et al. (2021b). A comprehensive analysis of the efficacy and safety of COVID-19 vaccines. Mol. Ther. 29 2794-2805. Digital Object Identifier: 10.1016/j.ymthe.2021.08.001 Google Scholar: Lookup Link · doi:10.1016/j.ymthe.2021.08.001
[10] CDC (2022). Interim clinical considerations for use of COVID-19 vaccines currently approved or authorized in the United States. Available at https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html.
[11] DASHTBALI, M. and MIRZAIE, M. (2021). A compartmental model that predicts the effect of social distancing and vaccination on controlling COVID-19. Sci. Rep. 11 1-11.
[12] DAVIS, C., LOGAN, N., TYSON, G., ORTON, R., HARVEY, W. T., PERKINS, J. S., MOLLETT, G., BLACOW, R. M., COVID-19 GENOMICS UK (COG-UK) CONSORTIUM et al. (2021). Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathog. 17 e1010022. Digital Object Identifier: 10.1371/journal.ppat.1010022 Google Scholar: Lookup Link · doi:10.1371/journal.ppat.1010022
[13] DONG, E., DU, H. and GARDNER, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20 533-534.
[14] DORIA-ROSE, N., SUTHAR, M. S., MAKOWSKI, M. et al. (2021). Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N. Engl. J. Med. 384 2259-2261. Digital Object Identifier: 10.1056/NEJMc2103916 Google Scholar: Lookup Link · doi:10.1056/NEJMc2103916
[15] DUKIC, V., LOPES, H. F. and POLSON, N. G. (2012). Tracking epidemics with Google Flu Trends data and a state-space SEIR model. J. Amer. Statist. Assoc. 107 1410-1426. Digital Object Identifier: 10.1080/01621459.2012.713876 Google Scholar: Lookup Link MathSciNet: MR3036404 · Zbl 1258.62102 · doi:10.1080/01621459.2012.713876
[16] GIORDANO, G., COLANERI, M., DI FILIPPO, A. et al. (2021). Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy. Nat. Med. 27 993-998.
[17] GUAN, W., NI, Z., HU, Y. et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382 1708-1720. Digital Object Identifier: 10.1056/NEJMoa2002032 Google Scholar: Lookup Link · doi:10.1056/NEJMoa2002032
[18] HAO, X., CHENG, S., WU, D. et al. (2020). Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584 420-424.
[19] HICKS, G. and RAY, W. (1971). Approximation methods for optimal control synthesis. Can. J. Chem. Eng. 49 522-528.
[20] HOLLAND, J. H. (1992). Genetic algorithms. Sci. Amer. 267 66-73.
[21] JOHNSON & JOHNSON (2021). Positive New Data for Johnson & Johnson Single-Shot COVID-19 Vaccine on Activity Against Delta Variant and Long-lasting Durability of Response. Available at https://www.jnj.com/positive-new-data-for-johnson-johnson-single-shot-covid-19-vaccine-on-activity-against-delta-variant-and-long-lasting-durability-of-response.
[22] JONES, M. (1993). Simple boundary correction for kernel density estimation. Stat. Comput. 3 135-146. Digital Object Identifier: 10.1007/BF00147776 Google Scholar: Lookup Link · doi:10.1007/BF00147776
[23] KERMACK, W. O. and MCKENDRICK, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character 115 700-721. Digital Object Identifier: 10.1098/rspa.1927.0118 Google Scholar: Lookup Link · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[24] KISLAYA, I., RODRIGUES, E. F., BORGES, V. et al. (2022). Comparative effectiveness of coronavirus vaccine in preventing breakthrough infections among vaccinated persons infected with Delta and Alpha variants. Emerg. Infec. Dis. 28 331.
[25] LEE, A. R. Y. B., WONG, S. Y., CHAI, L. Y. A. et al. (2022). Efficacy of Covid-19 vaccines in immunocompromised patients: Systematic review and meta-analysis. BMJ 376.
[26] LI, X., HUANG, Y., WANG, W. et al. (2021). Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. Emerg. Microbes Infect. 10 1751-1759. Digital Object Identifier: 10.1080/22221751.2021.1969291 Google Scholar: Lookup Link · doi:10.1080/22221751.2021.1969291
[27] LIANG, H. and WU, H. (2008). Parameter estimation for differential equation models using a framework of measurement error in regression models. J. Amer. Statist. Assoc. 103 1570-1583. Digital Object Identifier: 10.1198/016214508000000797 Google Scholar: Lookup Link MathSciNet: MR2504205 · Zbl 1286.62039 · doi:10.1198/016214508000000797
[28] LIU, C., GINN, H. M., DEJNIRATTISAI, W. et al. (2021). Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184 4220-4236. Digital Object Identifier: 10.1016/j.cell.2021.06.020 Google Scholar: Lookup Link · doi:10.1016/j.cell.2021.06.020
[29] MEDIĆ, S., ANASTASSOPOULOU, C., LOZANOV-CRVENKOVIĆ, Z. et al. (2022). Risk and severity of SARS-CoV-2 reinfections during 2020-2022 in Vojvodina, Serbia: A population-level observational study. Lancet Reg. Health Eur. 20 100453. Digital Object Identifier: 10.1016/j.lanepe.2022.100453 Google Scholar: Lookup Link · doi:10.1016/j.lanepe.2022.100453
[30] PLANAS, D., VEYER, D., BAIDALIUK, A. et al. (2021). Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596 276-280. Digital Object Identifier: 10.1038/s41586-021-03777-9 Google Scholar: Lookup Link · doi:10.1038/s41586-021-03777-9
[31] POLACK, F. P., THOMAS, S. J., KITCHIN, N. et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383 2603-2615. Digital Object Identifier: 10.1056/NEJMoa2034577 Google Scholar: Lookup Link · doi:10.1056/NEJMoa2034577
[32] QUICK, C., DEY, R. and LIN, X. (2021). Regression Models for Understanding COVID-19 Epidemic Dynamics With Incomplete Data. J. Amer. Statist. Assoc. 116 1561-1577. Digital Object Identifier: 10.1080/01621459.2021.2001339 Google Scholar: Lookup Link MathSciNet: MR4353694 · Zbl 1506.62459 · doi:10.1080/01621459.2021.2001339
[33] RAMSAY, J. O., HOOKER, G., CAMPBELL, D. and CAO, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69 741-796. Digital Object Identifier: 10.1111/j.1467-9868.2007.00610.x Google Scholar: Lookup Link MathSciNet: MR2368570 · Zbl 07555374 · doi:10.1111/j.1467-9868.2007.00610.x
[34] SHEIKH, A., MCMENAMIN, J., TAYLOR, B. et al. (2021). SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. Lancet 397 2461-2462. Digital Object Identifier: 10.1016/S0140-6736(21)01358-1 Google Scholar: Lookup Link · doi:10.1016/S0140-6736(21)01358-1
[35] STATISTA (2021). Distribution of COVID-19 vaccine doses distributed to the European Economic Area (EEA) as of July 21, 2022, by manufacturer. Available at https://www.statista.com/statistics/1219343/covid19-vaccine-doses-distributed-in-europe-by-manufacturer.
[36] THIRUVENGADAM, R., AWASTHI, A., MEDIGESHI, G. et al. (2021). Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection during the delta (B.1.617.2) variant surge in India: A test-negative, case-control study and a mechanistic study of post-vaccination immune responses. Lancet Infect. Dis. Digital Object Identifier: 10.1016/S1473-3099(21)00680-0 Google Scholar: Lookup Link · doi:10.1016/S1473-3099(21)00680-0
[37] TIAN, T., TAN, J., LUO, W., JIANG, Y., CHEN, M., YANG, S., WEN, C., PAN, W. and WANG, X. (2021). The effects of stringent and mild interventions for coronavirus pandemic. J. Amer. Statist. Assoc. 116 481-491. Digital Object Identifier: 10.1080/01621459.2021.1897015 Google Scholar: Lookup Link MathSciNet: MR4269997 · Zbl 1464.92253 · doi:10.1080/01621459.2021.1897015
[38] TOWNSEND, J. P., HASSLER, H. B., WANG, Z. et al. (2021). The durability of immunity against reinfection by SARS-CoV-2: A comparative evolutionary study. Lancet Microbe 2 e666-e675. Digital Object Identifier: 10.1016/S2666-5247(21)00219-6 Google Scholar: Lookup Link · doi:10.1016/S2666-5247(21)00219-6
[39] VOYSEY, M., CLEMENS, S. A. C., MADHI, S. A. et al. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397 99-111. Digital Object Identifier: 10.1016/S0140-6736(20)32661-1 Google Scholar: Lookup Link · doi:10.1016/S0140-6736(20)32661-1
[40] WHO (2021). What is COVID-19 vaccine efficacy. Available at https://www.afro.who.int/news/what-covid-19-vaccine-efficacy.
[41] YAN, H., ZHU, Y., GU, J., HUANG, Y., SUN, H., ZHANG, X., WANG, Y., QIU, Y. and CHEN, S. X. (2021). Better strategies for containing COVID-19 pandemic: A study of 25 countries via a vSIADR model. Proc. R. Soc. A 477 20200440. MathSciNet: MR4258333
[42] ZHU, Y., GU, J., QIU, Y. and CHEN, S. X. (2023). Supplement to “Estimating COVID-19 vaccine protection rates via dynamic epidemiological models—a study of 10 countries.” https://doi.org/10.1214/23-AOAS1764SUPP
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.