×

Iterative methods for solving split feasibility problems and fixed point problems in Banach spaces. (English) Zbl 1498.47130

Summary: In this paper, we consider a class of split feasibility problems in Banach space. By using shrinking projective method and the modified proximal point algorithm, we propose an iterative algorithm. Under suitable conditions some strong convergence theorems are proved. Our results extend a recent result of Takahashi-Xu-Yao [W. Takahashi et al., Set-Valued Var. Anal. 23, No. 2, 205–221 (2015; Zbl 1326.47099)] from Hilbert spaces to Banach spaces. Moreover, the method of proof is also different.

MSC:

47J25 Iterative procedures involving nonlinear operators
49J40 Variational inequalities
90C25 Convex programming
90C48 Programming in abstract spaces

Citations:

Zbl 1326.47099
Full Text: DOI

References:

[1] Censor,Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product space. Algorithms 8,221-239 (1994). · Zbl 0828.65065
[2] Byrne,C.: Iterative oblique projection onto convex sets and the split feasibili ty problem.Inverse Probl. 18, 441-453 (2002). · Zbl 0996.65048
[3] Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006).
[4] Martinet, B.,: R´egularisation din´equations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Op´er. 3, 154-158 (1970). · Zbl 0215.21103
[5] Bruck,RE, Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach space. Houst. J. Math. 3, 154-158 (1977). · Zbl 0383.47035
[6] Eckstein,J., Bertsckas, DP: On the Douglas Rachford splitting method and proximal point algorithm for maximal monotone operators. Math. Program. 55, 293-318 (1992). · Zbl 0765.90073
[7] Marino,G., Xu,HK: Convergence of generalized proximal point algorithm.Commun. Pure Appl. Anal. 3, 791-808 (2004). · Zbl 1095.90115
[8] Xu,HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002). · Zbl 1013.47032
[9] Yao,Y., Noor,MA: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217, 46-55 (2008). · Zbl 1147.65049
[10] Takahashi, W., Xu, HK, Yao, JC: Iterative methods for generalized split feasibility problems in Hilbert space. Set-Valued Var. Anal. 23, 205-221 (2015). · Zbl 1326.47099
[11] Alber, Y.a.I: Metric and generalized projection operators in Banach space: properties and applications.In; Kartsatos, A.G.(ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotonic Type, pp. 15-50. Marcel Dekker, New York (1996). · Zbl 0883.47083
[12] Alber, Y.a.I., Reich ,S.: An iterative method for solving a class of nonlinear operator equations in Banach space. Panamer. Math. J. 4(2),3 9-54 (1994). · Zbl 0851.47043
[13] Cioranescu,I.: Geometry of Banach space,Duality Mappings and Nonlinear Problems.Kluwer Academic Publishers, Dordrecht (1990). · Zbl 0712.47043
[14] Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in Banach space. SIAM. J. Optim. 13, 938-945 (2002). · Zbl 1101.90083
[15] Barbu,V., Precupanu, T.: Convexity Optimization in Banach space.Romanian ed. Math,Appl.(East Eur.Ser.) Vol.10.d.Reidel publishing Codordrecht (1986). · Zbl 0594.49001
[16] Takiahashi, W.: Convex Analysis and Approximation of Fixed poins,Yokohama Pherubl,Yokohama. 2000 (in Japaness). · Zbl 1089.49500
[17] Takiahashi, W. ; Nonlinear Functional Analysis: Fixed point Theory and Its Applications,Yokohama publ., Yokohama(2000). · Zbl 0997.47002
[18] Matsushita,S., Takahashi, W.: A strong convergence theorem for relatively nonexpansive mappings in Banach space.J.Approx. Theory. 134, 257-266 (2005). · Zbl 1071.47063
[19] Xu. HK: Inequalities in Banach spaces with applications. Nonlinear Anal.Theory Methods Appl. 16, 1127-1138 (1991). · Zbl 0757.46033
[20] Byrne, C., Censor, Y., Gibali, A., Reich, S.; Weak and strong convergence of algorithms for the split common null point problem. J. Nonliner Convex Anal. 13, 759-775 (2012) · Zbl 1262.47073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.