×

Isogeometric algorithm for one-step inverse forming of sheet metal. (English) Zbl 1536.74260

Summary: The isogeometric one-step inverse forming method aims to predict the shape of blanks and the formability of stamping parts using accurate geometry without meshing. In this paper, the discrete surface Ricci flow algorithm in computational conformal geometry is introduced as an unfolding algorithm for one-step inverse forming of isogeometric membrane elements. A combination of discrete surface Ricci flow algorithm and elastic iteration is proposed to predict the initial solution. It is proved applicable, even for the extremely curled parts which have negative angles and vertical walls. In addition, we propose a method that the external force of the punch is equivalent to the control point by means of Greville abscissae. A nonlinear equation system is established based on the principle of minimum potential energy. The Newton-Raphson iteration is used to calculate the blank shape and the thickness distribution of the stamping parts. The examples of square box, flower box, and L shape prove that the algorithm can predict the contour of the initial configuration and the formability of sheet metal stamping.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
Full Text: DOI

References:

[1] Guo, Y. Q.; Batoz, J. L.; Detraux, J. M.; Duroux, P., Finite element procedures for strain estimations of sheet metal forming parts, Int. J. Numer. Methods Eng., 30, 1385-1401 (1990) · Zbl 0716.73087
[2] Batoz, J. L.; Guo, Y. Q.; Frederic, M., The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts, Eng. Comput., 15, 7, 864-892 (1998) · Zbl 0954.74057
[3] Guo, Y. Q.; Batoz, J. L.; Naceur, H.; Bouabdallah, S.; Mercier, F.; Barlet, O., Recent developments on the analysis and optimum design of sheet metal forming parts using a simplied inverse approach, Comput. Struct., 78, 1-3, 133-148 (2000)
[4] Naceur, H.; Guo, Y. Q.; Batoz, J. L., Optimization of drawbead restraining forces and drawbead design in sheet metal forming process, Int. J. Mech. Sci., 43, 10, 2407-2434 (2001) · Zbl 0988.74532
[5] Du, T.; Liu, Y. Q.; Zhang, Z. B.; Li, Z. G., Fast FE analysis system for sheet metal stamping—FASTAMP, J. Mater. Process. Technol., 187-188, 402-406 (2007)
[6] Liu, Y. Q.; Li, Z. G.; YahYakun, Fast accurate prediction of blank shape in sheet mental forming, Acta Mech. Solida Sin., 17, 001, 58-64 (2004)
[7] Fu, L. J.; Dong, X. H.; Wang, P., Study on one-step simulation for the bending process of extruded profiles, Int. J. Adv. Manuf. Technol., 43, 11, 1069-1080 (2009)
[8] Shirin, M. B.; Assempour, A., Some improvements on the unfolding inverse finite element method for simulation of deep drawing process, Int. J. Adv. Manuf. Technol., 72, 1, 447-456 (2014)
[9] Azizi, R.; Assempour, A., Applications of linear inverse finite element method in prediction of the optimum blank in sheet metal forming, Mater. Des., 29, 10, 1965-1972 (2008)
[10] Chung, K.; Richmond, O., Ideal forming—I. Homogeneous deformation with minimum plastic work, Int. J. Mech. Sci., 34, 7, 575-591 (1992) · Zbl 0765.73026
[11] Chung, K.; Richmond, O., Ideal forming—II. Sheet forming with optimum deformation, Int. J. Mech. Sci., 34, 8, 617-633 (1992) · Zbl 0765.73027
[12] Chung, K.; Richmond, O., A deformation theory of plasticity based on minimum work paths, Int. J. Plast., 9, 8, 907-920 (1993) · Zbl 0793.73034
[13] Chung, K.; Richmond, O., The mechanics of ideal forming, J. Appl. Mech., 61, 1, 176-181 (1994) · Zbl 0816.73020
[14] Lee, C. H.; Huh, H., Blank design and strain prediction of automobile stamping parts by an inverse finite element approach, J. Mater Process. Technol., 63, 1-3, 645-650 (1997)
[15] Lee, C. H.; Huh, H., Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation, J. Mater Process. Technol., 82, 1, 145-155 (1998)
[16] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley: Wiley New York · Zbl 1378.65009
[17] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[18] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 276-289 (2010) · Zbl 1227.74107
[19] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1367-1378 (2011) · Zbl 1228.74077
[20] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Int. J. Numer. Methods Eng., 47, 12, 2039-2072 (2000) · Zbl 0983.74063
[21] Hu, Q. Y.; Xia, Y.; Natarajan, S.; Zilian, A.; Hu, P.; Bordas, S. P.A., Isogeometric analysis of thin Reissner-Mindlin shells: locking phenomena and B-bar method, Comput. Mech., 65, 5, 1323-1341 (2020) · Zbl 1464.74368
[22] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41/43, 5257-5296 (2006) · Zbl 1119.74024
[23] Rauen, M.; Machado, R. D.; Arndt, M., Isogeometric analysis of free vibration of framed structures: comparative problems, Eng. Comput., 34, 2, 377-402 (2017)
[24] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 17, 1143-1152 (2010) · Zbl 1227.78026
[25] Hsu, M. C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C. L.; Wu, M. C.H.; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, M. S., Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput. Mech., 55, 6, 1211-1225 (2015) · Zbl 1325.74048
[26] Chivukula, V.; Mousel, J.; Lu, J.; Vigmostad, S., Micro-scale blood particulate dynamics using a non-uniform rational B-spline-based isogeometric analysis, Int. J. Numer. Methods Biomed. Eng., 30, 12, 1437-1459 (2015)
[27] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3902-3914 (2009) · Zbl 1231.74422
[28] Zhang, X. K.; Zhu, X. F.; Wang, C. S.; Liu, H. B.; Zhou, Y.; Gai, Y. D.; Zhao, C.; Zheng, G. J.; Hang, Z. Z.; Hu, P., Initial solution estimation for one-step inverse isogeometric analysis in sheet metal stamping, Comput. Methods Appl. Mech. Engrg., 330, 629-645 (2018) · Zbl 1439.74236
[29] Wang, C. S.; Zhang, X. K.; Shen, G. Z.; Wang, Y., One-step inverse isogeometric analysis for the simulation of sheet metal forming, Comput. Methods Appl. Mech. Engrg., 349, 458-476 (2019) · Zbl 1441.74277
[30] Shamloofard, M.; Assempour, A., Development of an inverse isogeometric methodology and its application in sheet metal forming process, Appl. Math. Model., 73, SEP, 266-284 (2019)
[31] Shamloofard, M.; Assempour, A., Simulation of sheet metal forming processes by presenting a bending-dependent inverse isogeometric methodology, Int. J. Adv. Manuf. Technol., 112, 5, 1389-1408 (2021)
[32] Sowerby, R.; Duncan, J. L.; Chu, E., The modelling of sheet metal stampings, Int. J. Mech. Sci., 28, 7, 415-430 (1986)
[33] Guo, Y. Q.; Naceur, H.; Debray, K.; Bogard, F., Initial solution estimation to speed up inverse approach in stamping modeling, Eng. Comput., 20, 7/8, 810-834 (2003) · Zbl 1063.74512
[34] Lu, S. B.; Li, W.; Na, J. X.; Hu, P.; Xiao, J., Application of section line expansion method in one-step forming, J. Jilin Univ. (Eng. Technol. Ed.), 034, 001, 52-55 (2004), (in Chinese)
[35] Floater, M. S., Parametrization and smooth approximation of surface triangulations, Comput. Aided Geom. Design, 14, 3, 231-250 (1997) · Zbl 0906.68162
[36] Tang, B. T.; Zhao, Z.; Hagenah, H.; Lu, X. Y., Energy based algorithms to solve initial solution in one-step finite element method of sheet metal stamping, Comput. Methods Appl. Mech. Engrg., 196, 17, 2187-2196 (2007) · Zbl 1173.74445
[37] Tang, B. T.; Zhao, Z.; Lu, X. Y.; Wang, Z. Q.; Zhao, X. W.; Chen, S. Y., Fast thickness prediction and blank design in sheet metal forming based on an enhanced inverse analysis method, Int. J. Mech. Sci., 49, 9, 1018-1028 (2007)
[38] L.J. Fu, X.H. Dong, F. Peng, P. Wang, A generally suited method to get initial guess solutions for one-step and multi-step simulations of tube and profile forming based on parameterization, 27 (10) (2011) 1622-1639. · Zbl 1358.74071
[39] Piegl, L.; Tiller, W., The NURBS Book (2010), Springer-Verlag Inc.: Springer-Verlag Inc. New York, NY, USA
[40] Cox, M. G., The numerical evaluation of B-splines, IMA J. Appl. Math., 2, 2 (1972) · Zbl 0252.65007
[41] Gu, X. F.; Qiu, C. T., Computational Conformal Geometry (Theory) (2008), Higher Education Press: Higher Education Press Beijing, China, (in Chinese) · Zbl 1144.65008
[42] Gu, X. F.; Ren, G.; Feng, L.; Jian, S.; Wu, T. Q., A discrete uniformization therorem for polyheral surface II, J. Differential Geom., 109, 431-466 (2018) · Zbl 1401.30048
[43] Gu, X. F.; Feng, L.; Jian, S.; Wu, T. Q., A discrete uniformization therorem for polyheral surface, J. Differential Geom., 109, 223-256 (2018) · Zbl 1396.30008
[44] Chow, B.; Feng, L., Combinatorial Ricci flows on surfaces, J. Differential Geom., 63, 1, 97-129 (2003) · Zbl 1070.53040
[45] Adam, C.; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells, Comput. Methods Appl. Mech. Engrg., 284, 106-137 (2015) · Zbl 1423.74860
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.