×

Nonlinear dynamics of a Z-shaped structure with validated global analytical mode shapes. (English) Zbl 1466.74013

Summary: The nonlinear partial differential governing equations of the planar motion of a Z-shaped structure are derived using Hamilton’s principle. The 1:2 internally resonant global analytical mode shapes are validated by figure contrast and the modal assurance criterion (MAC). The partial differential governing equations are truncated into a two-degree-of-freedom ordinary differential system with the validated resonant global analytical mode shapes, and they are further investigated for internal and simultaneous primary resonances. The steady-state responses are studied, and numerical simulations of the system are performed. Complex nonlinear phenomena in the system, such as jumps, bifurcations, quasiperiodic motion and chaos, are observed under specific parameters. The parametric rule of these phenomena obviously depends on the accuracy of mode shapes. This work proposes a nonlinear analysis based on the quantitative validation of mode shapes, which may provide new insights into the optimal design of the parameters and the precise control of the motions of Z-shaped or other multibeam structures in engineering.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K30 Junctions
Full Text: DOI

References:

[1] Raman, A.; Melcher, J.; Tung, R., Cantilever dynamics in atomic force microscopy, Nano Today, 3, 20-27 (2008)
[2] Vyas, A.; Peroulis, D.; Bajaj, A. K., A microresonator design based on nonlinear 1 : 2 internal resonance in flexural structural modes, J Microelectromech Syst, 18, 744-762 (2009)
[3] Zhu, Y.; Moheimani, S. O.R.; Yuce, M. R., Bidirectional electrothermal actuator with z-shaped beams, IEEE Sens J, 12, 2508-2509 (2012)
[4] Chen, L. Q.; Jiang, W. A.; Panyam, M.; Daqaq, M. F., A broadband internally resonant vibratory energy harvester, J Vib Acoust, 138, 6, Article 061007 pp. (2016), (10 pages)
[5] Balachandran, B.; Nayfeh, A. H., Observations of modal interactions in resonantly forced beam-mass structures, Nonlinear Dyn, 2, 77-117 (1991)
[6] Silva, Da, M.R.M.C.: a reduced-order analytical model for the nonlinear dynamics of a class of flexible multi-beam structures, Int J Solids Struct, 35, 3299-3315 (1998) · Zbl 0973.74554
[7] Anderson, T. J.; Nayfeh, A. H.; Balachandran, B., Coupling between high-frequency modes and a low-frequency mode: theory and experiment, Nonlinear Dyn, 11, 17-36 (1996)
[8] Turner, K. L.; Miller, S. A.; Hartwell, P. G.; MacDonald, N. C.; Strogatz, S. H.; Adams, S. G., Five parametric resonances in a microelectromechanical system, Nature, 396, 149 (1998)
[9] Zhang, W., Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam, Chaos, Solitons Fractals, 26, 731-745 (2005) · Zbl 1093.70511
[10] Tian, R. L.; Yang, X. W.; Cao, Q. J.; Han, Y. W., The study on the midspan deflection of a beam bridge under moving loads based on sd oscillator, Int J Bifurcation Chaos, 22, 5, Article 1250108 pp. (2012), (15 pages) · Zbl 1258.34109
[11] Ding, H.; Li, Y.; Chen, L.-Q., Nonlinear vibration of a beam with asymmetric elastic supports, Nonlinear Dyn, 95, 2543-2554 (2019) · Zbl 1432.74110
[12] Balachandran, B.; Nayfeh, A. H., Nonlinear motions of beam-mass structure, Nonlinear Dyn, 1, 39-61 (1990)
[13] Zhang, W., Hu, W.H., Cao, D.X., Yang, X.F., Nonlinear analysis of a z-shaped planar beam, in Proceedings of the 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Buffalo, NY, USA, August 17-20, 2014, DETC2014-34109, pp. V006T010A053
[14] Yu, T. J.; Zhang, W.; Yang, X. D., Global dynamics of an autoparametric beam structure, Nonlinear Dyn, 88, 1329-1343 (2017)
[15] Zhang, W.; Hu, W. H.; Cao, D. X.; Yao, M. H., Vibration frequencies and modes of a z-shaped beam with variable folding angles, J Vib Acoust, 138, Article 041004 pp. (2016)
[16] Warminski, J.; Cartmell, M. P.; Bochenski, M.; Ivanov, I., Analytical and experimental investigations of an autoparametric beam structure, J Sound Vib, 315, 486-508 (2008)
[17] Tripathi, A.; Bajaj, A. K., Computational synthesis for nonlinear dynamics based design of planar resonant structures, J Vib Acoust, 135, 5, Article 051031 pp. (2013), (13 pages)
[18] Vlajic, N.; Fitzgerald, T.; Nguyen, V.; Balachandran, B., Geometrically exact planar beams with initial pre-stress and large curvature: static configurations, natural frequencies, and mode shapes, Int J Solids Struct, 51, 3361-3371 (2014)
[19] Zhou, S. X.; Chen, W. J.; Malakooti, M. H.; Cao, J. Y.; Inman, D. J., Design and modeling of a flexible longitudinal zigzag structure for enhanced vibration energy harvesting, J Intell Mater Syst Struct, 28, 367-380 (2016)
[20] Zou, H. X.; Zhang, W. M.; Li, W. B.; Wei, K. X.; Gao, Q. H.; Peng, Z. K.; Meng, G., Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion, Energy Convers Manag, 148, 1391-1398 (2017)
[21] Erturk, A.; Renno, J. M.; Inman, D. J., Modeling of piezoelectric energy harvesting from an l-shaped beam-mass structure with an application to uavs, J Intell Mater Syst Struct, 20, 529-544 (2009)
[22] Cao, D. X.; Leadenham, S.; Erturk, A., Internal resonance for nonlinear vibration energy harvesting, Eur Phys Spec Top, 224, 2867-2880 (2015)
[23] Georgiades, F.; Warminski, J.; Cartmell, M. P., Linear modal analysis of l-shaped beam structures, Mech Syst Sig Process, 38, 312-332 (2013)
[24] Georgiades, F., Nonlinear equations of motion of l-shaped beam structures, Eur J Mech-A/Solids, 65, 91-122 (2017) · Zbl 1406.74384
[25] Wang, F. X.; Bajaj, A. K., Nonlinear dynamics of a three-beam structure with attached mass and three-mode interactions, Nonlinear Dyn, 62, 461-484 (2010) · Zbl 1359.74161
[26] Iliuk, I.; da Fonseca Brasil, R. M.L. R.; Balthazar, J. M.; Tusset, A. M.; Piccirillo, V.; Piqueira, J. R.C., Potential application in energy harvesting of intermodal energy exchange in a frame: fem analysis, Int J Struct Stab Dyn, 14, 8, Article 1440027 pp. (2014), (10 pages)
[27] Dou, S. G.; Jensen, J. S., Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes, Comput Struct, 164, 63-74 (2016)
[28] Karami, M. A.; Inman, D. J., Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting, J Vib Acoust, 133, Article 011002 pp. (2011)
[29] Yaman, M.; Sen, S., Vibration control of a cantilever beam of varying orientation, Int J Solids Struct, 44, 1210-1220 (2007) · Zbl 1123.74037
[30] Asanuma, H.; Okubo, H.; Komatsuzaki, T.; Iwata, Y., Folded spring and mechanically switching sshi for high performance miniature piezoelectric vibration energy harvester, (773 (2016), IOP Publishing), Article 012082 pp.
[31] Danzi, F.; Gibert, J. M., Exact dynamics of an angle-shaped resonator for energy scavenging applications, Active and Passive Smart Structures and Integrated Systems XII, Int Soc Optics Photonics, 10595, Article 105952R pp. (2018)
[32] Zhao, Y.; Qin, Y.; Guo, L.; Tang, B. P., Modeling and experiment of a v-shaped piezoelectric energy harvester, Shock Vib, 2018, 1-15 (2018)
[33] Danzi, F.; Gibert, J. M.; Frulla, G.; Cestino, E., Generalized topology for resonators having n commensurate harmonics, J Sound Vib, 419, 585-603 (2018)
[34] Pydah, A.; Batra, R. C., Beam-based vibration energy harvesters tunable through folding, J Vib Acoust, 141 (2018)
[35] Chen, J.; Hu, W. H.; Li, Q. S., Nonlinear dynamics of a foldable multibeam structure with one to two internal resonances, Int J Mech Sci, 150, 369-378 (2019)
[36] Hu, W. H.; Wang, F. X.; Cao, D. X.; Chen, J. E.; Feng, J. J., Quantitative validation of the analytical mode shapes of a beam-like structure with a z-shaped configuration, J Mech Sci Technol, 33, 2059-2065 (2019)
[37] Georgiades, F.; Vakakis, A. F., Dynamics of a linear beam with an attached local nonlinear energy sink, Commun Nonlinear Sci. Numer Simul, 12, 643-651 (2007) · Zbl 1110.74037
[38] Arrieta, A. F.; Spelsberg-Korspeter, G.; Hagedorn, P.; Neild, S. A.; Wagg, D. J., Low order model for the dynamics of bi-stable composite plates, J Intell Mater Syst Struct, 22, 2025-2043 (2011)
[39] Chen, H.-Y.; Mao, X.-Y.; Ding, H.; Chen, L.-Q., Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks, Mech Syst Sig Process, 135, Article 106383 pp. (2020)
[40] Starosta, R.; Sypniewska-Kamińska, G.; Awrejcewicz, J., Asymptotic analysis of kinematically excited dynamical systems near resonances, Nonlinear Dyn, 68, 459-469 (2012) · Zbl 1348.70042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.