×

Harmonicity of sections of sphere bundles. (English) Zbl 1161.53050

Summary: We consider the energy functional on the space of sections of a sphere bundle over a Riemannian manifold \((M,\langle \cdot, \cdot \rangle)\) equipped with the Sasaki metric and discuss the characterising condition for critical points. Furthermore, we provide a useful method for computing the tension field in some particular situations. Such a method is shown to be adequate for many tensor fields defined on manifolds \(M\) equipped with a \(G\)-structure compatible with \(\langle \cdot, \cdot \rangle\). This leads to the construction of several new examples of differential forms which are harmonic sections or determine a harmonic map from \((M,\langle \cdot, \cdot \rangle)\) into its sphere bundle.

MSC:

53C43 Differential geometric aspects of harmonic maps
53C10 \(G\)-structures
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

References:

[1] Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Math. vol. 203. Birkhäuser, Basel (2002) · Zbl 1011.53001
[2] Bonan E. (1966). Sur le variétés riemanniennes a groupe d’holonomie G 2 ou Spin(7). C. R. Acad. Sci. Paris 262: 127–129 · Zbl 0134.39402
[3] Boyer C. and Galicki K. (2000). On Sasakian–Einstein geometry. Int. J. Math. 11: 873–909 · Zbl 1022.53038 · doi:10.1142/S0129167X00000477
[4] Boyer C., Galicki K. and Nakamaye M. (2003). On the geometry of Sasakian–Einstein 5-manifolds. Math. Ann. 325: 485–524 · Zbl 1046.53028 · doi:10.1007/s00208-002-0388-3
[5] Bryant R.L. (1987). Metrics with exceptional holonomy. Ann. Math. 126: 525–576 · Zbl 0637.53042 · doi:10.2307/1971360
[6] Chinea D. and González-Dávila J.C. (1990). A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. 156(4): 15–36 · Zbl 0711.53028 · doi:10.1007/BF01766972
[7] Chiossi, S., Salamon, S.: The intrinsic torsion of SU(3) and G 2-structures, Differential Geometry, Valencia 2001. World Sci. Publishing, Singapore, pp. 115–133 (2002) · Zbl 1024.53018
[8] Eells J. and Lemaire L. (1978). A report on harmonic maps. Bull. Lond. Math. Soc. 10: 1–68 · Zbl 0401.58003 · doi:10.1112/blms/10.1.1
[9] Eells J. and Lemaire L. (1988). Another report on harmonic maps. Bull. Lond. Math. Soc. 20: 385–524 · Zbl 0669.58009 · doi:10.1112/blms/20.5.385
[10] Eells J. and Sampson J.H. (1964). Harmonic mappings of Riemannian manifolds. Am. J. Math. 86: 109–160 · Zbl 0122.40102 · doi:10.2307/2373037
[11] Cleyton R. and Swann A.F. (2004). Einstein metrics via intrinsic or parallel torsion. Math. Z. 247(3): 513–528 · Zbl 1069.53041 · doi:10.1007/s00209-003-0616-x
[12] Fernández M. (1982). A classification of Riemannian manifolds with structure group Spin(7). Ann. Mat. Pura Appl. 143: 101–122 · Zbl 0602.53025 · doi:10.1007/BF01769211
[13] Fernández M. and Gray A. (1982). Riemannian manifolds with structure group G 2. Ann. Mat. Pura Appl. 32(IV): 19–45 · Zbl 0524.53023 · doi:10.1007/BF01760975
[14] Gil-Medrano O., González-Dávila J.C. and Vanhecke L. (2004). Harmonicity and minimality of oriented distributions. Israel J. Math. 143: 253–279 · Zbl 1073.58007 · doi:10.1007/BF02803502
[15] Gray, A.: Vector cross product on manifolds. Trans. Amer. Math. Soc. 141, 463–504 (1969). Correction 148, 625 (1970) · Zbl 0182.24603
[16] Gray A. (1971). Weak holonomy groups. Math. Z. 123: 290–300 · Zbl 0222.53043 · doi:10.1007/BF01109983
[17] Gray A. (1976). The structure of nearly Kähler manifolds. Math. Ann. 223: 233–248 · Zbl 0345.53019 · doi:10.1007/BF01360955
[18] Gray A. and Hervella L.M. (1980). The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123(4): 35–58 · Zbl 0444.53032 · doi:10.1007/BF01796539
[19] Harvey R. and Lawson H.B. (1982). Calibrated geometries. Acta Math. 148: 47–157 · Zbl 0584.53021 · doi:10.1007/BF02392726
[20] Lawson H.B. and Michelsohn M.L. (1989). Spin Geometry. Princeton University Press, New Jersey · Zbl 0688.57001
[21] Kashiwada T. (1971). A note on a Riemannian space with Sasakian 3-structure. Nat. Sci. Reps. Ochanomizu Univ. 22: 1–2 · Zbl 0228.53033
[22] Marrero J.C. (1992). The Local Structure of Trans-Sasakian Manifolds. Ann. Mat. Pura Appl. 162(4): 55–86 · Zbl 0772.53036 · doi:10.1007/BF01760000
[23] Martín Cabrera F. (1996). On Riemannian manifolds with G 2-structures. Boll. Unione Mat. It. 9A(7): 99–112
[24] Martín Cabrera F. (1995). On Riemannian manifolds with Spin(7)-structure. Publ. Math. Debrecen 46(3–4): 271–283 · Zbl 0858.53036
[25] Martín Cabrera F. (2004). Almost Quaternion-Hermitian Manifolds. Ann. Global Anal. Geom. 25: 277–301 arXiv:math.DG/0206115 · Zbl 1061.53030 · doi:10.1023/B:AGAG.0000023249.48228.93
[26] Martín Cabrera F. (2005). Special almost Hermitian geometry. J. Geom. Phys. 55(4): 450–470 arXiv: math.DG/0409167 · Zbl 1107.53019 · doi:10.1016/j.geomphys.2005.01.004
[27] Sakai, T.: Riemannian Geometry. Transl. Math. Mon. 149. Amer. Math. Soc., Providence 1996 · Zbl 0886.53002
[28] Salvai M. (2002). On the energy of sections of trivializable sphere bundles. Rendiconti del Seminario Matematico dell’Universitáe Politecnico di Torino 60: 147–155 · Zbl 1177.53035
[29] Swann A.F. (1989). Aspects symplectiques de la géometrie quaternionique. C. R. Acad. Sci. Paris 308: 225–228 · Zbl 0661.53023
[30] Urakawa, H.: Calculus of variations and harmonic maps, Transl. of Math. Monographs 132. Amer. Math. Soc., Providence (1993) · Zbl 0799.58001
[31] Vaisman I. (1979). Locally conformal Kähler manifolds with parallel Lee form. Rend. Mat. (6) 12(2): 263–284 · Zbl 0447.53032
[32] Wiegmink G. (1995). Total bending of vector fields on Riemannian manifolds. Math. Ann. 303: 325–344 · Zbl 0834.53034 · doi:10.1007/BF01460993
[33] Wood C.M. (1997). On the energy of a unit vector field. Geom. Dedicata 64: 319–330 · Zbl 0878.58017 · doi:10.1023/A:1017976425512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.