×

Unstable twisted modes in interpenetrating space plasmas containing superthermal species. (English) Zbl 1476.85008

Summary: The electrostatic twisted modes with orbital angular momentum and associated kinetic instability are studied in a permeating space plasma containing streaming particle species. The plasma containing superthermal electrons and ions is modeled by using a non-gyrotropic Kappa distribution function which penetrates through a relatively slow moving (static) plasma and gives rise to dispersion, damping and growth of ion-acoustic mode under various conditions. Using the Vlasov-Poisson model, the solutions of twisted modes are defined by Laguerre-Gaussian mode functions, which decompose the plasma distribution function and electric field into components characterized by the axial and azimuthal wave numbers. The dielectric constant is derived and analyzed for threshold condition of wave dispersion and instability in the presence of helical electric field with illustrations. The wave excitations due to penetration of solar wind into cometary clouds or interstellar electron-ion plasmas is examined.

MSC:

85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
76E20 Stability and instability of geophysical and astrophysical flows
82D10 Statistical mechanics of plasmas
81R25 Spinor and twistor methods applied to problems in quantum theory
35Q83 Vlasov equations
Full Text: DOI

References:

[1] Vranjes, J.; Poedts, S.; Ehsan, Z., Kinetic instability of ion acoustic mode in permeating plasmas, Phys. Plasmas, 16, Article 074501 pp. (2009)
[2] Vranjes, J.; Kono, M., Ion plasma wave and its instability in interpenetrating plasmas, Phys. Plasmas, 21, Article 042104 pp. (2014)
[3] Grard, R.; Pedersen, A.; Trotignon, J. G.; Beghin, C.; Mogilevsky, M.; Mikhailov, Y.; Molchanov, O.; Formisano, V., Observations of waves and plasma in the environment of comet Halley, Nature, 321, 290 (1986)
[4] Klimov, S.; Savin, S.; Aleksevich, Y.; Avanesova, G.; Balebanov, V.; Balikhin, M.; Galeev, A.; Gribov, B.; Nozdrachev, M.; Smirnov, V.; Sokolov, A.; Vaisberg, O.; Oberc, P.; Krawczyk, Z.; Grzedzielski, S.; Juchniewicz, J.; Nowak, K.; Orlowski, D.; Parfianovich, B.; Wozniak, D.; Zbyszynski, Z.; Voita, Y.; Triska, P., Extremely-low-frequency plasma waves in the environment of comet Halley, Nature, 321, 292 (1986)
[5] Balsiger, H.; Altwegg, K.; Bhler, F.; Geiss, J.; Ghielmetti, A. G.; Goldstein, B. E.; Goldstein, R.; Huntress, W. T.; Lazarus, A. J.; Meier, A.; Neugebauer, M.; Rettenmund, U.; Rosenbauer, H.; Schwenn, R.; Sharp, R. D.; Shelley, E. G.; Ungstrup, E.; Young, D. T., Ion composition and dynamics at comet Halley, Nature, 321, 330 (1986)
[6] Nobahar, D.; Hajisharifi, K.; Mehdian, H., Twisted modes instability of electron-positron shell interacted with moving ion background, Laser Part. Beams, 35, 543 (2017)
[7] Vasyliunas, V. M., A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, J. Geophys., 73, 2839 (1968)
[8] Pierrard, V.; Maksimovic, M.; Lemaire Core, J., Halo and Strahl electrons in the solar wind, Astrophys. Space Sci., 277, 195 (2001) · Zbl 0993.85504
[9] Rubab, N.; Ali, S.; Jaffer, G., Dust kinetic Alfvén waves and streaming instability in a non-Maxwellian magnetoplasma, Phys. Plasmas, 21, Article 063702 pp. (2014)
[10] Ali, S.; Eliasson, B., Slowly moving test charge in two-electron component non-Maxwellian plasma, Phys. Plasmas, 22, Article 084508 pp. (2015)
[11] Hellberg, M. A.; Mace, R. L.; Armstrong, R. J.; Karlstad, G., Electron-acoustic waves in the laboratory: an experiment revisited, J. Plasma Phys., 64, 433 (2000)
[12] Stverak, S.; Maksimovic, M.; Travnicek, P. M.; Marsch, E.; Fazakerley, A. N.; Scime, E. E., Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses observations, J. Geophys. Res., 114, Article A05104 pp. (2009)
[13] Tamburini, F.; Sponselli, A.; Thide, B.; Mendonca, J. T., Europhys. Lett., 90, Article 45001 pp. (2010)
[14] Chen, Q.; Qin, H.; Liu, J., Photons, phonons, and plasmons with orbital angular momentum in plasmas, Sci. Rep., 7, Article 41731 pp. (2017)
[15] Mendonça, J. T., Plasma Phys. Control. Fusion, 54, Article 124031 pp. (2012)
[16] Rehman, A.; Ali Shan, S.; Hamza, M. Y.; Lee, J. K., J. Geophys. Res. Space Phys., 122, 1690 (2017)
[17] Shukla, P. K., Twisted electrostatic ion-cyclotron waves in dusty plasmas, Phys. Rev. E, 87, Article 015101 pp. (2013)
[18] Mendonca, J. T.; Thide, B.; Then, U., Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum, Phys. Rev. Lett., 102, Article 185005 pp. (2009)
[19] Grewing, M.; Praderie, F.; Reinhard, R., Exploration of Halley’s Comet (1988), Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[20] Benz, A., Plasma Astrophysics (2002), Kluwer Academic Publishers: Kluwer Academic Publishers New York
[21] Sibeck, D. G., A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations, J. Geophys. Res., 95, 3755 (1990)
[22] Lundin, R.; Marklund, G., Phys. Scr. T, 60, 198 (1995)
[23] Stenzel, R. L., Whistler waves with angular momentum in space and laboratory plasmas and their counterparts in free space, Adv. Phys., X 1, 687 (2016)
[24] Jesacher, A.; Fürhapter, S.; Bernet, S.; Marte, M. R., Shadow effects in spiral phase contrast microscopy, Phys. Rev. Lett., 94, Article 233902 pp. (2005)
[25] Jack, B.; Leach, L.; Romero, J.; Arnold, S. F.; Marte, M. R.; Barnett, S. M.; Padgett, M. J., Holographic ghost imaging and the violation of a bell inequality, Phys. Rev. Lett., 103, Article 083602 pp. (2009)
[26] Zhan, Q., Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photonics, 1, 1 (2009)
[27] Vieira, J.; Trines, R.; Alves, E.; Fonseca, R.; Mendonça, J.; Bingham, R.; Norreys, P.; Silva, L., Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering, Nat. Commun., 7, Article 10371 pp. (2016)
[28] Shukla, P. K., Twisted dust acoustic waves in dusty plasmas, Phys. Plasmas, 19, Article 083704 pp. (2012)
[29] Mendonca, J. T., Kinetic description of electron plasma waves with orbital angular momentum, Phys. Plasmas, 19, Article 112113 pp. (2012)
[30] Khan, S. A.; Rehman, A.; Mendonca, J. T., Kinetic study of ion-acoustic plasma vortices, Phys. Plasmas, 21, Article 092109 pp. (2014)
[31] Ali, S.; Bukhari, S.; Mendonca, J. T., Twisted Landau damping rates in multi-component dusty plasmas, Phys. Plasmas, 23, Article 033703 pp. (2016)
[32] Harwitt, M., Photon orbital angular momentum in astrophysics, Astrophys. J., 597, 1266 (2003)
[33] Murawski, K.; Ballai, I.; Srivastava, A. K.; Lee, D., Three-dimensional numerical simulation of magnetohydrodynamic-gravity waves and vortices in the solar atmosphere, Mon. Not. R. Astron. Soc., 436, 1268 (2013)
[34] Fried, D. B.; Conte, S. D., The Plasma Dispersion Function (1961), Academic Press: Academic Press New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.