×

The marvelous consequences of Hardy spaces in quantum physics. (English) Zbl 1264.81171

Kielanowski, Piotr (ed.) et al., Geometric methods in physics. XXX workshop, Białowieża, Poland, June 26 – July 2, 2011. Selected papers based on the presentations at the workshop. Basel: Birkhäuser (ISBN 978-3-0348-0447-9/hbk; 978-3-0348-0448-6/ebook). Trends in Mathematics, 211-228 (2013).
Summary: Dynamical differential equations, like the Schrödinger equation for the states, or the Heisenberg equation for the observables, need to be solved under boundary conditions. The original boundary condition of von Neumann, the Hilbert space axiom, required that the allowed wave functions are Lebesgue square integrable. This leads by a mathematical theorem of Stone-von Neumann to the unitary group evolution meaning the time \(t\) extends over \(-\infty <t<+\infty\). Physicists do not use Lebesgue integrals but followed a different path using a lmost exclusively the Dirac formalism and well-behaved (Schwartz) functions. This led the mathematicians to Schwartz- Rigged Hilbert spaces (Gelfand triplets), which are the mathematical core of Dirac’s braket- formalism. This is insufficient for a theory that includes resonance and decay phenomena, which requires analytic continuation in energy \(E\) in order to accommodate exponentially decaying Gamow kets, Breit-Wigner (Lorentzian) resonances, and Lippmann-Schwinger kets. This leads to a pair of Rigged Hilbert Spaces of smooth Hardy functions, one representing the prepared states of scatteringe xperiments (preparation apparatus) and the other representingd etected observables (registration apparatus). A mathematical consequence of the Hardy space axiom is that the time evolution is asymmetric given by the semi-group, i.e., \(t_0\leq t<+\infty\), with a \(t_0\). What would the meaning of that \(t_0\) be?
For the entire collection see [Zbl 1254.00029].

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
47A70 (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces
30H10 Hardy spaces
Full Text: DOI

References:

[1] M.H. Stone, Ann. Math. 33(3), 643 (1932); J. von Neumann, Ann. Math. 33(3), 567 (1932). · Zbl 0005.16403
[2] P. Dirac, Proc, Roy. Soc. 113 (1932), 621-641; P. Dirac, The Principles of QuantumMechanics, 4th Edition, Oxford University Press, Oxford, 1958. · JFM 53.0846.01
[3] Schwartz, L., Théories des distributions (1950), Paris: Hermann, Paris · Zbl 0037.07301
[4] A. Bohm, The Rigged Hilbert Spaceand Quantum Mechanics, Springer Lecture Notes in Physics, vol. 78 (1978). · Zbl 0388.46045
[5] I.M. Gelfand and N.Ya. Vilenkin, Generalized functions, Vol. 4, 1st edition, Academic Press, New York, 1964; K. Maurin, Generalized Eigenfunction Expansion andUnitary Representations of TopologicalGroups, 1st edition, Polish Scientific Publishers, Warszawa, 1969; S.L. Sobolev, Math. Sbornik 1(43) 1936, 39-72; S.L. Sobolev, Some Applications of FunctionalAnalysis in Mathematical Physics, Leningrad, 1950; A. Grothendieck, Memoirs Amer. Math Soc., Nr. 16, Providence, RI 1966; J.P. Antoine and C. Trapani, Partial Inner Product Spaces, Lecture Notes in Mathematics, Springer Verlag Berlin, 2009
[6] Bohm, A.; Gadella, M., Dirac Kets, Gamow Vectorsand Gelfand Triplet, Lecture Note in Physics (1989), Berlin: Springer, Berlin · Zbl 0691.46051
[7] Newton, RG, Scattering Theory of Wavesand Particles, 2nd edition, Springer, New York, 1982 (1972), Taylor, Scattering Theory, John Wiley & Sons, June: See also J.R, Taylor, Scattering Theory, John Wiley & Sons, June
[8] Lippmann, BA; Schwinger, J., 398-408 (1953), Quantum Mechanics, Benjamin, Inc, New York: K. Gottfield, Quantum Mechanics, Benjamin, Inc, New York · Zbl 0343.47031
[9] A. Bohm, Quantum Mechanics, section XXI.4, 1st edition (1979) pp. 492-496; 2^nd edition (1986) pp. 549-567 or 3rd edition (2001) and later paperbacks.
[10] A. Bohm: Lett. Math. Phys. 3, 455 (1979) J. Math. Phys. 26, 2813-2823 (1981).
[11] Baumgartel, H., Math. Nachrichten, 75, 133-151 (1976) · Zbl 0361.47003 · doi:10.1002/mana.19760750113
[12] P.L. Duren, ℋ^𝑃-Spaces, Academic Press, New York, 1970; P. Koosis, Introduction to ℋ^𝑃Space, London Mathematical Society, Lecture Notes Series Vol. 40 (Cambridge University Press, Cambridge, 1980).
[13] O. Civitarese and M. Gadella, Physics Report, 396 (2004), 41; Sect. 3.1.
[14] Strauss, Y.; Horwitz, LP; Eisenberg, E., J. Math. Phys., 41, 12, 8050 (2000) · Zbl 1063.81091 · doi:10.1063/1.1310359
[15] Strauss, Y., Int. J. Theor. Phys., 42, 2285 (2003) · Zbl 1050.81066 · doi:10.1023/B:IJTP.0000005959.97056.8b
[16] Strauss, Y.; Horwitz, LP; Volovick, A., J. Math. Phys., 47, 123505 (2006) · Zbl 1112.47007 · doi:10.1063/1.2383069
[17] E.P. Wigner, Symmetries and Reflections, Indiana University Press, 1967; Ox Bow Press Woodbridge, Connecticut, 1979.
[18] Paley, R.; Wiener, N., Fourier Transform in theComplex Domain (1934), New York: American Mathematical Society, New York · Zbl 0011.01601
[19] Lax, PD; Phillips, RS, Scattering theory (1967), New York: Academic Press, New York · Zbl 0186.16301
[20] Baumgärtel, H., Int. J. Theor. Phys., 46, 1959 (2007) · Zbl 1134.81047 · doi:10.1007/s10773-006-9319-5
[21] Baumgärtel, H., J. Math. Phys., 51, 113508 (2010) · Zbl 1314.81152 · doi:10.1063/1.3504174
[22] See also H. Baumgärtel, Review in mathematical Physics, 18, 61 (2006).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.