×

The shifted wave equation on non-flat harmonic manifolds. (English) Zbl 07784104

Summary: We solve the shifted wave equation \[ \frac{\partial^2}{\partial t^2}\varphi (x,t)=(\Delta_x +\rho^2)\varphi (x,t) \] on a non-compact simply connected harmonic manifold with mean curvature of the horospheres \(2\rho >0\). We give an explicit representation of the solution as the inverse dual Abel transform of the spherical means of their initial conditions using the local injectivity of the Abel transform and symmetry properties of the spherical mean value operator. Furthermore, we investigate the shifted wave equation using the Fourier transform on harmonic manifolds of rank one. Additionally, we obtain a result analogous to the classical Paley-Wiener theorem and use it to show an asymptotic Huygens principle as well as asymptotic equidistribution of the energy of a solution of the shifted wave equation under assumptions on the Harish-Chandra type c-function.

MSC:

35R01 PDEs on manifolds
35L05 Wave equation
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)

References:

[1] Anker, J-P; Martinot, P.; Pedon, E.; Setti, AG, The shifted wave equation on Damek-Ricci spaces and on homogeneous trees, Trends in Harmonic Analysis, 1-25 (2013), Milan: Springer, Milan · Zbl 1275.43010 · doi:10.1007/978-88-470-2853-1_1
[2] Ásgeirsson, L., Über eine Mittelwertseigenschaft von Lösungen homogener linearer partieller Differentialgleichungen 2: Ordnung mit konstanten Koeffizienten, Math. Ann., 113, 1, 321-346 (1937) · Zbl 0015.01804 · doi:10.1007/BF01571637
[3] Astengo, F.; Camporesi, R.; Di Blasio, B., The Helgeson Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Aust. Math. Soc., 55, 3, 405-424 (1997) · Zbl 0894.43003 · doi:10.1017/S0004972700034079
[4] Astengo, F.; Di Blasio, B., Some properties of horocycles on Damek-Ricci spaces, Differ. Geom. Appl., 26, 6, 676-682 (2008) · Zbl 1156.43004 · doi:10.1016/j.difgeo.2008.04.016
[5] Astengo, F.; Di Blasio, B., Huygens’ principle and a Paley-Wiener type theorem on Damek-Ricci spaces, Ann. Math. Blaise Pascal, 17, 2, 327-340 (2010) · Zbl 1207.43006 · doi:10.5802/ambp.286
[6] Ballmann, W.; Brin, M.; Eberlein, P., Structure of manifolds of nonpositive curvature I, Ann. Math., 122, 1, 171-203 (1985) · Zbl 0589.53047 · doi:10.2307/1971373
[7] Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2007) · Zbl 1118.58016
[8] Besse, A.L.: Harmonic Manifolds, pp. 154-178. Springer, Berlin (1978)
[9] Biswas, K.: The Fourier transform on negatively curved harmonic manifolds (2018). arXiv: 1802.07236
[10] Biswas, K.; Knieper, G.; Peyerimhoff, N., The Fourier transform on harmonic manifolds of purely exponential volume growth, J. Geom. Anal., 31, 1, 126-163 (2021) · Zbl 1465.53060 · doi:10.1007/s12220-019-00253-9
[11] Bloom, WR; Xu, ZF, The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups, Applications of Hypergroups and Related Measure Algebras (Seattle, WA, 1993), 45-70 (1995), Providence: American Mathematical Society, Providence · Zbl 0834.42011 · doi:10.1090/conm/183/02054
[12] Bloom, WR; Heyer, H., Harmonic Analysis of Probability Measures on Hypergroups (2011), Berlin: De Gruyter, Berlin · Zbl 0828.43005
[13] Branson, T.; Ólafsson, G.; Schlichtkrull, H., Huyghens’ principle in Riemannian symmetric spaces, Math. Ann., 301, 3, 445-462 (1995) · Zbl 0822.43002 · doi:10.1007/BF01446638
[14] Branson, T.; Ólafsson, G.; Pasquale, A., The Paley-Wiener theorem for the Jacobi transform and the local Huygens’ principle for root systems with even multiplicities, Indag. Math., 16, 3-4, 429-442 (2005) · Zbl 1168.43302 · doi:10.1016/S0019-3577(05)80034-5
[15] Branson, TP; Ólafsson, G., Equipartition of energy for waves in symmetric space, J. Funct. Anal., 97, 2, 403-416 (1991) · Zbl 0796.43006 · doi:10.1016/0022-1236(91)90009-T
[16] Chavel, I.; Randol, B.; Dodziuk, J., Eigenvalues in Riemannian Geometry (1984), Amsterdam: Elsevier Science, Amsterdam · Zbl 0551.53001
[17] Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2006) · Zbl 1099.53001
[18] Damek, E.; Ricci, F., A class of nonsymmetric harmonic Riemannian spaces, Bulletin of the American Mathematical Society, 27, 1, 139-143 (1992) · Zbl 0755.53032 · doi:10.1090/S0273-0979-1992-00293-8
[19] Damek, E.; Ricci, F., Harmonic analysis on solvable extensions of h-type groups, J. Geom. Anal., 2, 3, 213-248 (1992) · Zbl 0788.43008 · doi:10.1007/BF02921294
[20] DeTurck, D., Kazdan, J. L.: Some regularity theorems in riemannian geometry. Ann. Sci. Ecol. Norm. Supérieure Ser. 4 14(3), 249-260 (1981) · Zbl 0486.53014
[21] El Kamel, J.; Yacoub, C., Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian, Ann. Math. Blaise Pascal, 12, 1, 147-160 (2005) · Zbl 1088.35036 · doi:10.5802/ambp.199
[22] Friedlander, F.G.: The wave equation on a curved space-time. Cambridge Monographs on Mathematical Physics, No. 2. Cambridge University Press, Cambridge (1975) · Zbl 0316.53021
[23] Günther, P.: Huygens’ principle and hyperbolic equations. Perspectives in Mathematics, vol. 5. Academic Press, Boston (1988). With appendices by V. Wünsch · Zbl 0655.35003
[24] Heber, J., On harmonic and asymptotically harmonic homogeneous spaces, Geom. Funct. Anal., 16, 4, 869-890 (2006) · Zbl 1108.53022 · doi:10.1007/s00039-006-0569-4
[25] Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Number Nr. 1635 in Lecture Notes in Mathematics. Springer, Berlin (1996)
[26] Helgason, S., Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions (2000), Providence: Mathematical Surveys and Monographs. American Mathematical Society, Providence · Zbl 0965.43007 · doi:10.1090/surv/083
[27] Helgason, S., Differential operators on homogeneous spaces, Acta Math., 102, 3, 239-299 (1959) · Zbl 0146.43601 · doi:10.1007/BF02564248
[28] Helgason, S., Huygens’ principle for wave equations on symmetric spaces, J. Funct. Anal., 107, 2, 279-288 (1992) · Zbl 0757.58036 · doi:10.1016/0022-1236(92)90108-U
[29] Helgason, S., Geometric Analysis on Symmetric Spaces (1994), Providence: American Mathematical Society, Providence · Zbl 0809.53057
[30] Knieper, G.: Mannigfaltigkeiten ohne konjugierte Punkte, volume 168 of Bonner Mathematische Schriften [Bonn Mathematical Publications]. Universität Bonn, Mathematisches Institut, Bonn, 1986. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn (1985)
[31] Knieper, G.: Hyperbolic dynamics and Riemannian geometry. In: Handbook of dynamical systems, Vol. 1A, pp. 453-545. North-Holland, Amsterdam (2002) · Zbl 1049.37020
[32] Knieper, G., New results on noncompact harmonic manifolds, Comment. Math. Helv., 87, 3, 669-703 (2012) · Zbl 1287.53056 · doi:10.4171/CMH/265
[33] Knieper, G., A Survey on Noncompact Harmonic and Asymptotically Harmonic Manifolds (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1366.53045 · doi:10.1017/CBO9781316275849.006
[34] Knieper, G.; Peyerimhoff, N., Harmonic functions on rank one asymptotically harmonic manifolds, J. Geom. Anal., 26, 2, 750-781 (2016) · Zbl 1339.53044 · doi:10.1007/s12220-015-9570-1
[35] Kreyssig, P.: An introduction to harmonic manifolds and the Lichnerowicz conjecture (2010). arXiv:1007.0477
[36] Lichnerowicz, A., Sur les espaces riemanniens complètement harmoniques, Bull. Soc. Math. France, 72, 146-168 (1944) · Zbl 0060.38506 · doi:10.24033/bsmf.1359
[37] Nikolayevsky, Y., Two theorems on harmonic manifolds, Comment. Math. Helv., 80, 29-50 (2005) · Zbl 1078.53032 · doi:10.4171/CMH/2
[38] Noguchi, M., The solution of the shifted wave equation on Damek-Ricci space, Interdiscip. Inform. Sci., 8, 1, 101-113 (2002) · Zbl 1018.43008
[39] Ólafsson, G.; Schlichtkrull, H., Wave propagation on Riemannian symmetric spaces, J. Funct. Anal., 107, 2, 270-278 (1992) · Zbl 0757.58037 · doi:10.1016/0022-1236(92)90107-T
[40] Peyerimhoff, N.; Samiou, E., Integral geometric properties of non-compact harmonic spaces, J. Geom. Anal., 25, 1, 122-148 (2015) · Zbl 1325.53100 · doi:10.1007/s12220-013-9416-7
[41] Ranjan, A.; Shah, H., Busemann functions in a harmonic manifold, Geom. Dedicata, 101, 1, 167-183 (2003) · Zbl 1045.53023 · doi:10.1023/A:1026369930269
[42] Ray, SK; Sarkar, RP, Fourier and radon transform on harmonic NA groups, Trans. Am. Math. Soc., 361, 8, 4269-4297 (2009) · Zbl 1180.43005 · doi:10.1090/S0002-9947-09-04800-4
[43] Rouvière, F., Radon transform on a harmonic manifold, J. Geom. Anal., 31, 6, 6365-6385 (2021) · Zbl 1479.44001 · doi:10.1007/s12220-020-00535-7
[44] Strichartz, RS, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52, 1, 48-79 (1983) · Zbl 0515.58037 · doi:10.1016/0022-1236(83)90090-3
[45] Szabó, ZI, The Lichnerowicz conjecture on harmonic manifolds, J. Differ. Geom., 31, 1, 1-28 (1990) · Zbl 0686.53042 · doi:10.4310/jdg/1214444087
[46] Taylor, M.E.: Partial differential equations I: Basic theory, Applied Mathematical Sciences, vol. 115, 2nd edn. Springer, New York (2011) · Zbl 1206.35002
[47] Trimeche, K., Generalized Wavelets and Hypergroups (2018), London: CRC Press, London · Zbl 0926.42016
[48] Varadarajan, VS, Harmonic Analysis on Real Reductive Groups (2006), Berlin: Springer, Berlin
[49] Walker, A.G.: On Lichnerowicz’s conjecture for harmonic 4-spaces. J. Lond. Math. Soc. s1-24(1), 21-28 (1949) · Zbl 0032.18801
[50] Willmore, TJ, Riemannian Geometry (1996), Oxford: Clarendon Press, Oxford · Zbl 0797.53002
[51] Yosida, K., Functional Analysis (1974), Berlin: Springer, Berlin · Zbl 0286.46002 · doi:10.1007/978-3-642-96208-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.