×

Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir’s discharge coefficient. (English) Zbl 1410.90286

Summary: A principal step in designing dividing hydraulic structures entails determining the side weir discharge coefficient. In this study, Firefly optimization-based support vector regression (SVR-FF) is introduced and examined in terms of predicting the discharge coefficient of a modified labyrinth side weir. Ten non-dimensional parameters of various geometrical and hydraulic conditions are defined as the input parameters for the SVR-FF, and the side weir discharge coefficient is defined as the output. Improvements in SVR prediction accuracy are determined by comparing SVR-FF with the traditional SVR model. The results indicate that the SVR-FF model with \(RMSE\) of 0.035 is about 10% more accurate than SVR with \(RMSE\) of 0.039. Thus, combining the firefly optimization algorithm with SVR increases the prediction model performance.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI

References:

[1] De Marchi, G., Saggio di teoria del funzionamento degli stramazzi laterali, L’Energia elettrica, 11, 849-860 (1934)
[2] Singh, R.; Manivannan, D.; Satyanarayana, T., Discharge coefficients of rectangular side weirs, J. Irrig. Drain. Eng., 120, 814-819 (1994)
[3] Swamee, P. K.; Pathak, S. K.; Ali, M. S., Side weir analysis using elementary discharge coefficient, J. Irrig. Drain. Eng., 120, 742-755 (1994)
[4] Agaccioglu, H.; Yuksel, Y., Side weir flow in curved channels, J. Irrig. Drain. Eng., 124, 3, 163-175 (1998)
[5] Borghei, S.; Jalili, M.; Ghodsian, M., Discharge coefficient for sharp-crested side weir in subcritical flow, J. Hydraul. Eng., 125, 10, 1051-1056 (1999)
[6] Muslu, Y., Numerical analysis of lateral weir flow, J. Irrig. Drain. Eng., 127, 4, 246-253 (2001)
[7] Ghodsian, M., Supercritical flow over a rectangular side weir, Can. J. Civ. Eng., 30, 596-600 (2003)
[8] Yüksel, E., Effect of specific energy variation on lateral overflows, Flow Meas. Instrum., 15, 259-269 (2004)
[9] Ramamurthy, A.; Qu, J.; Vo, D., Nonlinear PLS method for side weir flows, J. Irrig. Drain Eng., 132, 5, 486-489 (2006)
[10] Lee, D. S.; Kim, C. W., Evaluation of discharge coefficients for sharp crested side weir in wide channel, J. Korean Soc. Civil Eng., 28, 5B, 449-458 (2008)
[11] Novak, G.; Kozelj, D.; Steinman, F.; Bajcar, T., Study of flow at side weir in narrow flume using visualization techniques, Flow Meas. Instrum., 29, 45-51 (2013)
[12] Emiroglu, M. E.; Kaya, N.; Agaccioglu, H., Discharge capacity of labyrinth side weir located on a straight channel, J. Irrig. Drain. Eng., 136, 37-46 (2010)
[13] Aydin, M. C.; Emiroglu, M. E., Determination of capacity of labyrinth side weir by CFD, Flow Meas. Instrum., 29, 1-8 (2013)
[14] Mirnaseri, M.; Emadi, A., Hydraulic performance of combined flow rectangular labyrinth weir-gate, Middle East. J. Sci. Res., 18, 1335-1342 (2013)
[15] Bautista-Capetillo, C.; Robles, O.; Júnez-Ferreira, H.; Playán, E., Discharge coefficient analysis for triangular sharp-crested weirs using low-speed photographic technique, J. Irrig. Drain. Eng., 140, 3, Article 06013005 pp. (2014)
[16] Emin Emiroglu, M.; Cihan Aydin, M.; Kaya, N., Discharge characteristics of a trapezoidal labyrinth side weir with one and two cycles in subcritical flow, J. Irrig. Drain. Eng., 140, 5, Article 04014007 pp. (2014)
[17] Bilhan, O.; Emin Emiroglu, M.; Kisi, O., Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel, Adv. Eng. Softw., 41, 831-837 (2010) · Zbl 1346.76122
[18] Emiroglu, M. E.; Bilhan, O.; Kisi, O., Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel, Expert. Syst. Appl., 38, 867-874 (2011)
[19] Kisi, O.; Emin Emiroglu, M.; Bilhan, O.; Guven, A., Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches, Expert. Syst. Appl., 39, 3454-3460 (2012)
[20] Onen, F., Prediction of Scour at a Side-Weir with GEP, ANN and Regression Models, Arab. J. Sci. Eng., 39, 6031-6041 (2014)
[21] Dursun, O. F.; Kaya, N.; Firat, M., Estimating discharge coefficient of semi-elliptical side weir using ANFIS, J. Hydrol., 426-427, 55-62 (2012)
[22] Zaji, A. H.; Bonakdari, H., Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs, Flow Meas. Instrum., 40, 149-156 (2014)
[23] Bonakdari, H.; Zaji, A. H.; Shamshirband, S.; Hashim, R.; Petkovic, D., Sensitivity analysis of the discharge coefficient of a modified triangular side weir by adaptive neuro-fuzzy methodology, Measurement, 73, 74-81 (2015)
[24] Emiroglu, M. E.; Kisi, O.; Bilhan, O., Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique, Adv. Eng. Softw., 41, 154-160 (2010) · Zbl 1423.76335
[25] Asefa, T.; Kemblowski, M.; McKee, M.; Khalil, A., Multi-time scale stream flow predictions: The support vector machines approach, J. Hydrol., 318, 7-16 (2006)
[26] Azamathulla, H. Md.; Wu, F. C., Support vector machine approach for longitudinal dispersion coefficients in natural streams, Appl. Soft Comput., 11, 2, 2902-2905 (2011)
[27] Pal, M.; Goel, A., Prediction of the end-depth ratio and discharge in semi-circular and circular shaped channels using support vector machines, Flow Meas. Instrum., 17, 1, 49-57 (2006)
[28] Parsaie, A.; Yonesi, H. A.; Najafian, S., Predictive modeling of discharge in compound open channel by support vector machine technique, Model. Earth Syst. Environ., 1, 1-6 (2015)
[29] Kazem, A.; Sharifi, E.; Hussain, F. K.; Saberi, M.; Hussain, O. K., Support vector regression with chaos-based firefly algorithm for stock market price forecasting, Appl. Soft Comput. J., 13, 947-958 (2013)
[30] Xiong, T.; Bao, Y.; Hu, Z., Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting, Knowl. Based. Syst., 55, 87-100 (2014)
[31] Borghei, S. M.; Parvaneh, A., Discharge characteristics of a modified oblique side weir in subcritical flow, Flow Meas. Instrum., 22, 370-376 (2011)
[32] Vapnik, V.; Golowich, S. E.; Smola, A., Support vector method for function approximation, regression estimation, and signal processing, (10th Annual Conference on Neural Information Processing Systems, NIPS 1996, Neural information processing systems foundation. 10th Annual Conference on Neural Information Processing Systems, NIPS 1996, Neural information processing systems foundation, Denver, CO (1997)), 281-287
[33] Vapnik, V., The Nature of Statistical Learning Theory (2000), Springer: Springer New York, USA · Zbl 0934.62009
[34] Huang, C.; Davis, L. S.; Townshend, J. R.G., An assessment of support vector machines for land cover classification, Int. J. Remote Sens., 23, 725-749 (2002)
[35] Sung, A. H.; Mukkamala, S., Identifying important features for intrusion detection using support vector machines and neural networks, (Proceedings of International Symposium on Applications and the Internet (2003)), 209-216
[36] Rajasekaran, S.; Gayathri, S.; Lee, T. L., Support vector regression methodology for storm surge predictions, Ocean. Eng., 35, 1578-1587 (2008)
[37] Yang, H.; Huang, K.; King, I.; Lyu, M. R., Localized support vector regression for time series prediction, Neurocomputing, 72, 2659-2669 (2009)
[38] Shamshirband, S.; Petkovic, D.; Javidnia, H.; Gani, A., Sensor data fusion by support vector regression methodology; a comparative study, Sens. J., IEEE. (2014), 1-1
[39] Yang, X.-S., Firefly algorithms for multimodal optimization, Stochastic Algorithms: Foundations and Applications, 169-178 (2009), Springer · Zbl 1260.90164
[40] Basser, H.; Karami, H.; Shamshirband, S.; Jahangirzadeh, A.; Akib, S.; Saboohi, H., Predicting optimum parameters of a protective spur dike using soft computing methodologies - A comparative study, Comput. Fluids., 97, 168-176 (2014)
[41] Jahangirzadeh, A.; Shamshirband, S.; Aghabozorgi, S.; Akib, S.; Basser, H.; Anuar, N. B.; Kiah, M. L.M., A cooperative expert based support vector regression (Co-ESVR) system to determine collar dimensions around bridge pier, Neurocomputing, 140, 172-184 (2014)
[42] Pal, S. K.; Rai, C. S.; Singh, A. P., Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems, Int. J. Intell. Syst. Appl., 4, 50-57 (2012)
[43] Fister Jr, I.; Yang, X. S.; Brest, J., A comprehensive review of firefly algorithms, Swarm, Evol. Comput., 13, 34-46 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.