×

Order of events matter: comparing discrete models for optimal control of species augmentation. (English) Zbl 1448.92176

Summary: We investigate optimal timing of augmentation of an endangered/threatened species population in a target region by moving individuals from a reserve or captive population. This is formulated as a discrete-time optimal control problem in which augmentation occurs once per time period over a fixed number of time periods. The population model assumes the Allee effect growth functions in both target and reserve populations and the control objective is to maximize the target and reserve population sizes over the time horizon while accounting for costs of augmentation. Two possible orders of events are considered for different life histories of the species relative to augmentation time: move individuals either before or after population growth occurs. The control variable is the proportion of the reserve population to be moved to the target population. We develop solutions and illustrate numerical results which indicate circumstances for which optimal augmentation strategies depend upon the order of events.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
49J21 Existence theories for optimal control problems involving relations other than differential equations
39A60 Applications of difference equations

Software:

KELLEY

References:

[1] Allee, W. C.1931. Animal Aggregations: A Study in General Sociology, Chicago: University of Chicago Press. [Crossref], [Google Scholar]
[2] Allee, W.1938. The Social Life of Animals, London: William Heinemann. [Crossref], [Google Scholar]
[3] Berec, L., Angulo, E. and Courchamp, F.2007. Multiple Allee effects and population management. Trends Ecol. Evol., 22: 185-191. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[4] Boukal, D. S. and Berec, L.2002. Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters. J. Theoret. Biol., 218: 375-394. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[5] Canon, M. D., Cullum, C. D. Jr. and Polak, E.1970. Theory of Optimal Control and Mathematical Programming, New York: McGraw-Hill Series in Systems Science, McGraw-Hill. [Google Scholar] · Zbl 0264.49001
[6] Caswell, H.2001. Matrix Population Models, Sunderland, MA: Sinauer Associates. [Google Scholar]
[7] Cheyne, S. M.2006. Wildlife reintroduction: Considerations of habitat quality at the release site. BMC Ecol., 6 [Crossref], [Google Scholar]
[8] Clark, C. W. and Mangel, M.2000. Dynamic State Variable Models in Ecology: Methods and Applications, Oxford Series in Ecology and Evolution, Oxford University Press. [Google Scholar]
[9] Courchamp, F., Clutton-Brock, T. and Grenfell, B.1999. Inverse density dependence and the Allee effect. Trends Ecol. Evol., 14: 405-410. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[10] Eisen, M.1988. Mathematical Methods and Models in the Biological Sciences, Englewood Cliffs, NJ: Prentice Hall. [Google Scholar] · Zbl 0765.92002
[11] Florida Fish and Wildlife Conservation Commission. Annual report on the research and management of florida panthers: 2005-2006. Tech. rep., Fish and Wildlife Research Institute & Division of Habitat and Species Conservation, Naples, Florida, USA, 2006, available at http://www.panther.state.fl.us/news/pdf/PantherAR2005_2006.pdf. [Google Scholar]
[12] Global Environmental Outlook 4: Environment for Development Report Tech. rep., United Nations Environmental Programme, 2007, available at http://www.unep.org/geo/GEO4/report/GEO-4_Report_Full_en.pdf. [Google Scholar]
[13] Goh, B., Leitmann, G. and Vincent, T.1974. Optimal control of a prey-predator system. Math. Biosc., 19: 263-286. [Crossref], [Google Scholar] · Zbl 0297.92013
[14] Haines, A. M., Tewes, M. E., Laack, L. L., Horne, J. S. and Young, J. H.2006. A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States. Biol. Conservat., 132: 424-436. [Crossref], [Web of Science ®], [Google Scholar]
[15] Hearne, J. and Swart, J.1991. Optimal translocation strategies for saving the black rhino. Ecol. Model., 59: 279-292. [Crossref], [Web of Science ®], [Google Scholar]
[16] Hedrick, P. W.1995. Gene flow and genetic restoration: The florida panther as a case study. Conservat. Biol., 9: 996-1007. [Crossref], [Web of Science ®], [Google Scholar]
[17] Hof, J. and Bevers, M.1998. Spatial Optimization for Managed Ecosystems, New York: Columbia University Press. [Google Scholar]
[18] Hof, J. and Bevers, M.2002. Spatial Optimization in Ecological Applications, New York: Columbia University Press. [Crossref], [Google Scholar] · Zbl 1017.90060
[19] Kasworm, W. F., Proctor, M. F. and Servheen, C.2007. Success of grizzly bear population augmentation in Northwestern Montana. J. Wildlife Manag., 71: 1261-1266. available at http://www.forestry.umt.edu/research/MFCES/programs/GrizzlyBearRecovery/Kasworm. [Crossref], [Web of Science ®], [Google Scholar]
[20] Kelley, C.1999. Iterative Methods for Optimization, Philadelphia: SIAM. [Crossref], [Google Scholar] · Zbl 0934.90082
[21] Kingston, N., Waldren, S. and Smyth, N.2004. Conservation genetics and ecology of Angiopteris chauliodonta Copel. (Marattiaceae), a critically endangered fern from Pitcairn Island, South Central Pacific Ocean. Biol. Conservat., 117: 309-319. [Crossref], [Web of Science ®], [Google Scholar]
[22] Land, D., Cunningham, M., Lotz, M. and Shindle, D.Florida panther annual report 2004-05 Tech. rep., Florida Fish and Wildlife Conservation Commission, Tallahassee, Florida, 2005 available at http://myfwc.com/panther/news/pdf/2003-2004PantherGeneticRestorationAnnualReportFinal9-28-04.pdf[Google Scholar]
[23] Lenhart, S. and Zhong, P.2009. “Investigating the order of events in optimal control of integrodifference equations”. In Systems Theory: Modeling, Analysis and Control, Edited by: Jaï, A. E., Afifi, L. and Zerrik, E. H.89-100. Perpignan, , France: Presses Universitaires de Perpignan. [Google Scholar]
[24] Maes, D., Vanreusel, W., Talloen, W. and Van Dyck, H.2004. Functional conservation units for the endangered Alcon Blue Butterfly Maculinea Alcon in Belgium (Lepidoptera: Lycaenidae). Biol. Conservat., 120: 229-241. [Crossref], [Web of Science ®], [Google Scholar]
[25] Pfab, M. and Witkowski, E.2000. A simple population viability analysis of the critically endangered Euphorbia clivicola R.A. Dyer under four management scenarios. Biol. Conservat., 96: 263-270. [Crossref], [Web of Science ®], [Google Scholar]
[26] Pimm, S. L., Dollar, L. and Bass, O. L.J.2006. The genetic rescue of the Florida panther. Anim. Conservat., 9: 115-122. [Crossref], [Web of Science ®], [Google Scholar]
[27] Pontryagin, L., Boltyanskii, V., Gamkrelize, R. and Mishchenko, E.1967. The Mathematical Theory of Optimal Processes, New York: Wiley. [Google Scholar]
[28] Povilitis, A.1998. Characteristics and conservation of a fragmented population of huemul Hippocamelus bisulcus in central Chile. Biol. Conservat., 86: 97-104. [Crossref], [Web of Science ®], [Google Scholar]
[29] Romain-Bondi, K. A., Wielgus, R. B., Waits, L., Kasworm, W. F., Austin, M. and Wakkinen, W.2004. Density and population size estimates for North Cascade grizzly bears using DNA hair-sampling techniques. Biol. Conservat., 117: 417-428. [Crossref], [Web of Science ®], [Google Scholar]
[30] Rout, T., Hauser, C. and Possingham, H. P.2007. Minimise long-term loss or maximise short-term gain? Optimal translocation strategies for threatened species. Ecol. Model., 201: 67-74. [Crossref], [Web of Science ®], [Google Scholar]
[31] Rozdilsky, I., Chave, J., Levin, S. and Tilman, D.2001. Towards a theoretical basis for ecosystem conservations. Ecol. Res., 16: 983-995. [Crossref], [Web of Science ®], [Google Scholar]
[32] Salinas, R. A., Lenhart, S. and Gross, L. J.2005. Control of a metapopulation harvesting model for black bears. Nat. Resource Model., 18: 307-321. [Crossref], [Google Scholar] · Zbl 1125.91404
[33] Servheen, C., Kasworm, W. F. and Thier, T. J.1995. Transplanting grizzly bears Ursus arctos horribilis as a management tool - Results from the cabinet mountains, Montana, USA. Biol. Conservat., 71: 261-268. [Crossref], [Web of Science ®], [Google Scholar]
[34] Sethi, S. P. and Thompson, G. L.2000. Optimal Control Theory: Applications to Management Science and Economics, Kluwer Academic Press. [Google Scholar] · Zbl 0998.49002
[35] Sinclair, A., Nantel, P. and Catling, P.2005. Dynamics of threatened goldenseal populations and implications for recovery. Biol. Conservat., 123: 355-360. [Crossref], [Web of Science ®], [Google Scholar]
[36] Stephens, P., Sutherland, W. and Freckleton, R.1999. What is the Allee effect?. Oikos, 87: 185-190. [Crossref], [Web of Science ®], [Google Scholar]
[37] Wickwire, K.1977. Mathematical models for the control of pests and infectious diseases: A survey. Theor. Popul. Biol., 11: 182-238. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0356.92001
[38] Willcox, L.2009. Grizzly bears: Taking stock of 2009, and a bear prayer for 2010, Switchboard: Natural Resources Defense Council Staff Blog. available at http://switchboard.nrdc.org/blogs/lwillcox/grizzly_bears_taking_stock_of.html. [Google Scholar]
[39] Williams, J., ReVelle, C. and Levin, S.2005. Spatial attributes and reserve design models: A review. Environ. Model. Assess., 10: 161-162. [Crossref], [Web of Science ®], [Google Scholar]
[40] Workman, J. T. and Lenhart, S.2007. Optimal Control Applied to Biological Models, London: Chapman & Hall/CRC. [Google Scholar] · Zbl 1291.92010
[41] Zhong, P. and Lenhart. 2012. Optimal control of a harvesting problem in integrodifference equations with growth- harvesting-dispersal order. Discrete Contin. Dyn. Syst., Ser. B, 17: 2281-2298. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1246.49006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.