×

A morphoelastic shell model of the eye. (English) Zbl 1473.74097

Summary: The eye grows during childhood to position the retina at the correct distance behind the lens to enable focused vision, a process called emmetropization. Animal studies have demonstrated that this growth process is dependent upon visual stimuli, but dependent on genetic and environmental factors that affect the likelihood of developing myopia. The coupling between optical signal, growth, remodeling, and elastic response in the eye is particularly challenging to understand. To analyse this coupling, we develop a minimal morphoelastic model of an eye growing under intraocular pressure in response to visual stimuli. Distinct to existing three-dimensional finite-element models of the eye, we treat the sclera as a thin axisymmetric hyperelastic shell which undergoes local growth in response to external stimulus. This simplified analytic morphoelastic model provides a tractable framework in which we can evaluate various emmetropization hypotheses and understand different types of growth feedback. As an example, we demonstrate that local growth laws are sufficient to tune the global size and shape of the eye for focused vision across a wide range of parameter values.

MSC:

74L15 Biomechanical solid mechanics
74K25 Shells
74B20 Nonlinear elasticity
74S05 Finite element methods applied to problems in solid mechanics
92C10 Biomechanics

References:

[1] Morgan, I. G.; Ohno-Matsui, K.; Saw, S. M., Myopia, Lancet, 379, 9827, 1739-1748 (2012) · doi:10.1016/S0140-6736(12)60272-4
[2] Spillmann, L., Stopping the rise of myopia in Asia, Graefe Arch. Clin. Exp. Ophthalmol., 258, 5, 943-959 (2020) · doi:10.1007/s00417-019-04555-0
[3] Sherwin, J. C.; Mackey, D. A., Update on the epidemiology and genetics of myopic refractive error, Exp. Rev. Ophthalmol., 8, 1, 63-87 (2013) · doi:10.1586/eop.12.81
[4] Dolgin, E., The myopia boom, Nature, 519, 7543, 276-278 (2015) · doi:10.1038/519276a
[5] Holden, B. A.; Jong, M.; Davis, S.; Wilson, D.; Fricke, T.; Resnikoff, S., Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now, Clin. Exp. Optom., 98, 6, 491-493 (2015) · doi:10.1111/cxo.12339
[6] Holden, B. A.; Fricke, T. R.; Wilson, D. A.; Jong, M.; Naidoo, K. S.; Sankaridurg, P.; Wong, T. Y.; Naduvilath, T. J.; Resnikoff, S., Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050, Ophthalmology, 123, 5, 1036-1042 (2016) · doi:10.1016/j.ophtha.2016.01.006
[7] Morgan, R.; Speakman, J.; Grimshaw, S., Inuit myopia: an environmentally induced “epidemic”?, Can. Med. Assoc. J., 112, 5, 575 (1975)
[8] Manjunath, V.; Enyedi, L., Pediatric myopic progression treatments: science, Sham, and promise, Curr. Ophthalmol. Rep., 2, 4, 150-157 (2014) · doi:10.1007/s40135-014-0054-4
[9] Russo, A.; Semeraro, F.; Romano, M. R.; Mastropasqua, R.; Dell’Omo, R.; Costagliola, C., Myopia onset and progression: can it be prevented?, Int. Ophthalmol., 34, 3, 693-705 (2014) · doi:10.1007/s10792-013-9844-1
[10] Wu, P. C.; Chuang, M. N.; Choi, J.; Chen, H.; Wu, G.; Ohno-Matsui, K.; Jonas, J. B.; Cheung, C. M.G., Update in myopia and treatment strategy of atropine use in myopia control, Eye, 33, 1, 3-13 (2019) · doi:10.1038/s41433-018-0139-7
[11] Fatt, I.; Weissman, B., Physiology of the Eye: An Introduction to the Vegetative Functions (1992), London: Butterworths, London
[12] Karimi, A.; Razaghi, R.; Navidbakhsh, M.; Sera, T.; Kudo, S., Mechanical properties of the human sclera under various strain rates: elastic, hyperelastic, and viscoelastic models, J. Biomat. Tissue Eng., 7, 8, 686-695 (2017) · doi:10.1166/jbt.2017.1609
[13] Romano, M. R.; Romano, V.; Pandolfi, A.; Costagliola, C.; Angelillo, M., On the use of uniaxial tests on the sclera to understand the difference between emmetropic and highly myopic eyes, Meccanica, 52, 3, 603-612 (2017) · doi:10.1007/s11012-016-0416-0
[14] Bryant, M. R.; McDonnell, P. J., Optical feedback-controlled scleral remodeling as a mechanism for myopic eye growth, J. Theor. Biol., 193, 4, 613-622 (1998) · doi:10.1006/jtbi.1998.0727
[15] Grytz, R.; Girkin, C. A.; Libertiaux, V.; Downs, J. C., Perspectives on biomechanical growth and remodeling mechanisms in glaucoma, Mech. Res. Commun., 42, 92-106 (2012) · doi:10.1016/j.mechrescom.2012.01.007
[16] Grytz, R.; Fazio, M. A.; Girard, M. J.; Libertiaux, V.; Bruno, L.; Gardiner, S.; Girkin, C. A.; Downs, J. C., Material properties of the posterior human sclera, J. Mech. Behav. Biomed., 29, 602-617 (2013) · doi:10.1016/j.jmbbm.2013.03.027
[17] Grytz, R.; El Hamdaoui, M., Multi-scale modeling of vision-guided remodeling and age-dependent growth of the tree shrew sclera during eye development and lens-induced myopia, J. Elast., 129, 1-2, 171-195 (2017) · Zbl 1373.74074 · doi:10.1007/s10659-016-9603-4
[18] Simonini, I.; Pandolfi, A., Customized finite element modelling of the human cornea, PLoS ONE, 10, 6 (2015) · doi:10.1371/journal.pone.0130426
[19] Sánchez, P.; Moutsouris, K.; Pandolfi, A., Biomechanical and optical behavior of human corneas before and after photorefractive keratectomy, J. Cataract Refract. Surg., 40, 6, 905-917 (2014) · doi:10.1016/j.jcrs.2014.03.020
[20] Montanino, A.; Gizzi, A.; Vasta, M.; Angelillo, M.; Pandolfi, A., Modeling the biomechanics of the human cornea accounting for local variations of the collagen fibril architecture, J. Appl. Math. Mech./Z. Angew. Math. Mech., 98, 12, 2122-2134 (2018) · Zbl 07804242
[21] Pandolfi, A.; Gizzi, A.; Vasta, M., A microstructural model of cross-link interaction between collagen fibrils in the human cornea, Philos. Trans. R. Soc. A, 377, 2144 (2019) · doi:10.1098/rsta.2018.0079
[22] Pandolfi, A., Cornea modelling, Eye Vis., 7, 1, 1-15 (2020) · doi:10.1186/s40662-019-0166-x
[23] Humphrey, J. D., Cardiovascular Solid Mechanics. Cells, Tissues, and Organs (2002), New York: Springer, New York · doi:10.1007/978-0-387-21576-1
[24] Cowin, S. C., Tissue growth and remodeling, Annu. Rev. Biomed. Eng., 6, 77-107 (2004) · doi:10.1146/annurev.bioeng.6.040803.140250
[25] Kuhl, E.; Maas, R.; Himpel, G.; Menzel, A., Computational modeling of arterial wall growth, Biomech. Model. Mechanobiol., 6, 5, 321-331 (2007) · doi:10.1007/s10237-006-0062-x
[26] Horvat, N.; Virag, L.; Holzapfel, G. A.; Sorić, J.; Karšaj, I., A finite element implementation of a growth and remodeling model for soft biological tissues: verification and application to abdominal aortic aneurysms, Comput. Methods Appl. Mech. Eng., 352, 586-605 (2019) · Zbl 1441.74127 · doi:10.1016/j.cma.2019.04.041
[27] Cyron, C. J.; Humphrey, J. D., Growth and remodeling of load-bearing biological soft tissues, Meccanica, 52, 3, 645-664 (2017) · doi:10.1007/s11012-016-0472-5
[28] Goriely, A.; Vandiver, R., On the mechanical stability of growing arteries, IMA J. Appl. Math., 75, 4, 549-570 (2010) · Zbl 1425.74324 · doi:10.1093/imamat/hxq021
[29] Taber, L. A., Biomechanics of growth, remodeling and morphogenesis, Appl. Mech. Rev., 48, 487-545 (1995) · doi:10.1115/1.3005109
[30] Moulton, D. E.; Goriely, A., Possible role of differential growth in airway wall remodeling in asthma, J. Appl. Physiol., 110, 4 (2011) · doi:10.1152/japplphysiol.00991.2010
[31] Budday, S.; Steinmann, P.; Goriely, A.; Kuhl, E., Size and curvature regulate pattern selection in the mammalian brain, Extreme Mech. Lett., 4, 193-198 (2015) · doi:10.1016/j.eml.2015.07.004
[32] Ambrosi, D.; Ben Amar, M.; Cyron, C. J.; DeSimone, A.; Goriely, A.; Humphrey, J. D.; Kuhl, E., Growth and remodelling of living tissues: perspectives, challenges and opportunities, J. R. Soc. Interface, 16, 157 (2019) · doi:10.1098/rsif.2019.0233
[33] Diether, S.; Schaeffel, F., Local changes in eye growth induced by imposed local refractive error despite active accommodation, Vis. Res., 37, 6, 659-668 (1997) · doi:10.1016/S0042-6989(96)00224-6
[34] Wallman, J.; Gottlieb, M. D.; Rajaram, V.; Fugate-Wentzek, L. A., Local retinal regions control local eye growth and myopia, Science, 237, 4810, 73-77 (1987) · doi:10.1126/science.3603011
[35] Foulds, W. S.; Barathi, V. A.; Luu, C. D., Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light, Investig. Ophthalmol. Vis. Sci., 54, 13, 8004-8012 (2013) · doi:10.1167/iovs.13-12476
[36] Kröger, R.; Wagner, H. J., The eye of the blue acara (aequidens pulcher, cichlidae) grows to compensate for defocus due to chromatic aberration, J. Comp. Physiol. A, 179, 6, 837-842 (1996) · doi:10.1007/BF00207362
[37] Liu, R.; Qian, Y. F.; He, J. C.; Hu, M.; Zhou, X. T.; Dai, J. H.; Qu, X. M.; Chu, R. Y., Effects of different monochromatic lights on refractive development and eye growth in Guinea pigs, Exp. Eye Res., 92, 6, 447-453 (2011) · doi:10.1016/j.exer.2011.03.003
[38] Werblin, F.; Roska, B., The movies in our eyes, Sci. Am., 296, 4, 72-79 (2007) · doi:10.1038/scientificamerican0407-72
[39] Oyster, C. W., The Human Eye (1999), Sunderland: Sinauer, Sunderland
[40] Rodriguez, E. K.; Hoger, A.; McCulloch, A. D., Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27, 4, 455-467 (1994) · doi:10.1016/0021-9290(94)90021-3
[41] Goriely, A.; Ben Amar, M., On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity, Biomech. Model. Mechanobiol., 6, 5, 289-296 (2007) · doi:10.1007/s10237-006-0065-7
[42] Ambrosi, D.; Ateshian, G.; Arruda, E.; Cowin, S.; Dumais, J.; Goriely, A.; Holzapfel, G. A.; Humphrey, J.; Kemkemer, R.; Kuhl, E., Perspectives on biological growth and remodeling, J. Mech. Phys. Solids, 59, 4, 863-883 (2011) · Zbl 1270.74134 · doi:10.1016/j.jmps.2010.12.011
[43] Goriely, A., The Mathematics and Mechanics of Biological Growth (2017), New York: Springer, New York · Zbl 1398.92003 · doi:10.1007/978-0-387-87710-5
[44] Tongen, A.; Goriely, A.; Tabor, M., Biomechanical model for appressorial design in magnaporthe grisea, J. Theor. Biol., 240, 1, 1-8 (2006) · Zbl 1447.92037 · doi:10.1016/j.jtbi.2005.08.014
[45] Woolley, T. E.; Gaffney, E. A.; Oliver, J. M.; Baker, R. E.; Waters, S. L.; Goriely, A., Cellular blebs: pressure-driven, axisymmetric, membrane protrusions, Biomech. Model. Mechanobiol., 13, 2, 463-476 (2014) · doi:10.1007/s10237-013-0509-9
[46] Shen, L.; You, Q. S.; Xu, X.; Gao, F.; Zhang, Z.; Li, B.; Jonas, J. B., Scleral and choroidal volume in relation to axial length in infants with retinoblastoma versus adults with malignant melanomas or end-stage glaucoma, Graefe Arch. Clin. Exp. Ophthalmol., 254, 9, 1779-1786 (2016) · doi:10.1007/s00417-016-3345-7
[47] Jonas, J. B.; Holbach, L.; Panda-Jonas, S., Scleral cross section area and volume and axial length, PLoS ONE, 9, 3, 1-7 (2014)
[48] Coulombre, A. J., The role of intraocular pressure in the development of the chick eye. I. Control of eye size, J. Exp. Zool., 133, 2, 211-225 (1956) · doi:10.1002/jez.1401330202
[49] Maurice, D.; Mushin, A., Production of myopia in rabbits by raised body-temperature and increased intraocular pressure, Lancet, 288, 7474, 1160-1162 (1966) · doi:10.1016/S0140-6736(66)90476-4
[50] Quinn, G. E.; Berlin, J. A.; Young, T. L.; Ziylan, S.; Stone, R. A., Association of intraocular pressure and myopia in children, Ophthalmology, 102, 2, 180-185 (1995) · doi:10.1016/S0161-6420(95)31038-X
[51] Girard, M. J.; Dahlmann-Noor, A.; Rayapureddi, S.; Bechara, J. A.; Bertin, B. M.; Jones, H.; Albon, J.; Khaw, P. T.; Ethier, C. R., Quantitative mapping of scleral fiber orientation in normal rat eyes, Investig. Ophthalmol. Vis. Sci., 52, 13, 9684-9693 (2011) · doi:10.1167/iovs.11-7894
[52] Jones, H.; Girard, M.; White, N.; Fautsch, M. P.; Morgan, J.; Ethier, C.; Albon, J., Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head, J. R. Soc. Interface, 12, 106 (2015) · doi:10.1098/rsif.2015.0066
[53] Gouget, C. L.; Girard, M. J.; Ethier, C. R., A constrained von Mises distribution to describe fiber organization in thin soft tissues, Biomech. Model. Mechanobiol., 11, 3-4, 475-482 (2012) · doi:10.1007/s10237-011-0326-y
[54] Coudrillier, B.; Pijanka, J. K.; Jefferys, J. L.; Goel, A.; Quigley, H. A.; Boote, C.; Nguyen, T. D., Glaucoma-related changes in the mechanical properties and collagen micro-architecture of the human sclera, PLoS ONE, 10, 7 (2015) · doi:10.1371/journal.pone.0131396
[55] Melnik, A. V.; Da Rocha, H. B.; Goriely, A., On the modeling of fiber dispersion in fiber-reinforced elastic materials, Int. J. Non-Linear Mech., 75, 92-106 (2015) · doi:10.1016/j.ijnonlinmec.2014.10.006
[56] Spencer, A. J.M., Deformations of Fibre-Reinforced Materials (1972), Oxford: Clarendon, Oxford · Zbl 0238.73001
[57] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of arteries, Proc. R. Soc. A, 466, 2118, 1551-1597 (2010) · Zbl 1197.74075 · doi:10.1098/rspa.2010.0058
[58] Melnik, A. V.; Goriely, A., Dynamic fiber reorientation in a fiber-reinforced hyperelastic material, Math. Mech. Solids, 18, 6, 634-648 (2013) · Zbl 07280066 · doi:10.1177/1081286513485773
[59] Zhang, L.; Albon, J.; Jones, H.; Gouget, C. L.; Ethier, C. R.; Goh, J. C.; Girard, M. J., Collagen microstructural factors influencing optic nerve head biomechanicscollagen microstructural factors, Investig. Ophthalmol. Vis. Sci., 56, 3, 2031-2042 (2015) · doi:10.1167/iovs.14-15734
[60] Green, A. E.; Adkins, J. E., Large Elastic Deformations (1970), London: Oxford University Press, London · Zbl 0227.73067
[61] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of arteries, Proc. R. Soc. A, 466, 2118, 1551-1597 (2010) · Zbl 1197.74075 · doi:10.1098/rspa.2010.0058
[62] Coudrillier, B.; Boote, C.; Quigley, H. A.; Nguyen, T. D., Scleral anisotropy and its effects on the mechanical response of the optic nerve head, Biomech. Model. Mechanobiol., 12, 5, 941-963 (2013) · doi:10.1007/s10237-012-0455-y
[63] Girard, M.; Downs, J. C.; Bottlang, M.; Burgoyne, C. F.; Suh, J. F., Peripapillary and posterior scleral mechanics, part II-experimental and inverse finite element characterization, J. Biomech. Eng., 131, 5 (2009) · doi:10.1115/1.3113683
[64] Destrade, M.; Mac Donald, B.; Murphy, J.; Saccomandi, G., At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials, Comput. Mech., 52, 4, 959-969 (2013) · Zbl 1311.74117 · doi:10.1007/s00466-013-0857-4
[65] Gizzi, A.; Pandolfi, A.; Vasta, M., A generalized statistical approach for modeling fiber-reinforced materials, J. Eng. Math., 109, 1, 211-226 (2018) · Zbl 1408.74036 · doi:10.1007/s10665-017-9943-5
[66] Kalhöfer-Köchling, M.; Bodenschatz, E.; Wang, Y., Structure tensors for dispersed fibers in soft materials, Phys. Rev. Appl., 13 (2020) · doi:10.1103/PhysRevApplied.13.064039
[67] Wang, Y.; Bensaid, N.; Tiruveedhula, P.; Ma, J.; Ravikumar, S.; Roorda, A., Human foveal cone photoreceptor topography and its dependence on eye length, eLife, 8 (2019) · doi:10.7554/eLife.47148
[68] Haughton, D., Elastic Membranes, 233-267 (2001) · Zbl 0993.74033
[69] Atchison, D. A., Optical models for human myopic eyes, Vis. Res., 46, 14, 2236-2250 (2006) · doi:10.1016/j.visres.2006.01.004
[70] Adkins, J. E.; Rivlin, R. S., Large elastic deformations of isotropic materials. IX. The deformation of thin shells, Philos. Trans. R. Soc. A, 244, 888, 505-531 (1952) · Zbl 0048.18204
[71] Gordon, R. A.; Donzis, P. B., Refractive development of the human eye, AMA Arch. Ophthalmol., 103, 6, 785-789 (1985) · doi:10.1001/archopht.1985.01050060045020
[72] Howell, P.; Kozyreff, G.; Ockendon, J., Applied Solid Mechanics (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1153.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.