×

Ideal structure of Nica-Toeplitz algebras. (English) Zbl 07846496

Summary: We study the gauge-invariant ideal structure of the Nica-Toeplitz algebra \(\mathcal{NT}(X)\) of a product system \((A, X)\) over \(\mathbb{N}^n\). We obtain a clear description of \(X\)-invariant ideals in \(A\), that is, restrictions of gauge-invariant ideals in \(\mathcal{NT}(X)\) to \(A\). The main result is a classification of gauge-invariant ideals in \(\mathcal{NT}(X)\) for a proper product system in terms of families of ideals in \(A\). We also apply our results to higher-rank graphs.

MSC:

46L08 \(C^*\)-modules
46L55 Noncommutative dynamical systems

References:

[1] Bates, T., The ideal structure of the \(C^*\)-algebras of infinite graphs, Ill. J. Math., 46, 4, 1159-1176, 2002 · Zbl 1036.46038
[2] Blackadar, B., Operator algebras. Vol. 122 encyclopaedia of mathematical sciences, Theory of \(C^*\)-Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry III, 517, 2006, Berlin: Springer, Berlin · Zbl 1092.46003
[3] Carlsen, TM, Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems, Proc. Lond. Math. Soc., 103, 4, 563-600, 2011 · Zbl 1236.46060 · doi:10.1112/plms/pdq028
[4] Dessi, J.A., Kakariadis, E.T.A.: Equivariant Nica-Pimsner quotients associated with strong compactly aligned product systems (2023). arXiv:2310.04175
[5] Dor-On, A., C*-envelopes for operator algebras with a coaction and co-universal C*-algebras for product systems, Adv. Math., 400, 2022 · Zbl 1500.46045 · doi:10.1016/j.aim.2022.108286
[6] Dor-On, A.; Kakariadis, ETA, Operator algebras for higher rank analysis and their application to factorial languages, J. Anal. Math., 143, 2, 555-613, 2021 · Zbl 1482.46057 · doi:10.1007/s11854-021-0163-6
[7] Dor-On, A.; Katsoulis, E., Tensor algebras of product systems and their \({\rm C}^*\)-envelopes, J. Funct. Anal., 278, 7, 2020 · Zbl 1441.46044 · doi:10.1016/j.jfa.2019.108416
[8] Exel, R.; Pardo, E., Self-similar graphs, a unified treatment of Katsura and Nekrashevych \(C^*\)-algebras, Adv. Math., 306, 1046-1129, 2017 · Zbl 1390.46050 · doi:10.1016/j.aim.2016.10.030
[9] Fowler, NJ, Discrete product systems of Hilbert bimodules, Pac. J. Math., 204, 2, 335-375, 2002 · Zbl 1059.46034 · doi:10.2140/pjm.2002.204.335
[10] Green, P., The local structure of twisted covariance algebras, Acta Math., 140, 3-4, 191-250, 1978 · Zbl 0407.46053 · doi:10.1007/BF02392308
[11] Kajiwara, T.; Pinzari, C.; Watatani, Y., Ideal structure and simplicity of the \(C^\ast \)-algebras generated by Hilbert bimodules, J. Funct. Anal., 159, 2, 295-322, 1998 · Zbl 0942.46035 · doi:10.1006/jfan.1998.3306
[12] Katsura, T., A class of \(C^\ast \)-algebras generalizing both graph algebras and homeomorphism \(C^\ast \)-algebras. I. Fundamental results, Trans. Am. Math. Soc., 356, 11, 4287-4322, 2004 · Zbl 1049.46039 · doi:10.1090/S0002-9947-04-03636-0
[13] Katsura, T., Ideal structure of \(C^*\)-algebras associated with \(C^*\)-correspondences, Pac. J. Math., 230, 1, 107-145, 2007 · Zbl 1152.46048 · doi:10.2140/pjm.2007.230.107
[14] Kumjian, A.; Pask, D., Higher rank graph \(C^\ast \)-algebras, N. Y. J. Math., 6, 1-20, 2000 · Zbl 0946.46044
[15] Lance, EC, Hilbert \(C^*\)-Modules. Vol. 210. London Mathematical Society Lecture Note Series. A Toolkit for Operator Algebraists, 130, 1995, Cambridge: Cambridge University Press, Cambridge · Zbl 0822.46080 · doi:10.1017/CBO9780511526206
[16] Li, X.: Semigroup \(C^*\)-algebras. In: Operator Algebras and Applications: The Abel Symposium 2015, pp. 191-202. Springer (2016)
[17] Murphy, GJ, \(C^*\)-algebras generated by commuting isometries, Rocky Mt. J. Math., 26, 1, 237-267, 1996 · Zbl 0853.46055 · doi:10.1216/rmjm/1181072114
[18] Nekrashevych, V., \(C^*\)-algebras and self-similar groups, J. Reine Angew. Math., 630, 59-123, 2009 · Zbl 1175.46048 · doi:10.1515/CRELLE.2009.035
[19] Nica, A., \(C^*\)-algebras generated by isometries and Wiener-Hopf operators, J. Oper. Theory, 27, 1, 17-52, 1992 · Zbl 0809.46058
[20] Pangalela, YEP, Realising the Toeplitz algebra of a higher-rank graph as a Cuntz-Krieger algebra, N. Y. J. Math., 22, 277-291, 2016 · Zbl 1361.46043
[21] Pedersen, GK; Eilers, S.; Olesen, D., \(C^*\)-algebras and their automorphism groups, Pure and Applied Mathematics (Amsterdam), 520, 2018, London: Academic Press, London · Zbl 1460.46001
[22] Pimsner, MV, A class of \(C^*\)-algebras generalizing both Cuntz-Krieger algebras and crossed products by \(\mathbb{Z}\) in free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., 12, 189-212, 1997 · Zbl 0871.46028
[23] Raeburn, I.; Sims, A., Product systems of graphs and the Toeplitz algebras of higher-rank graphs, J. Oper. Theory, 53, 2, 399-429, 2005 · Zbl 1093.46032
[24] Raeburn, I.; Sims, A.; Yeend, T., Higher-rank graphs and their \(C^*\)-algebras, Proc. Edinb. Math. Soc., 46, 1, 99-115, 2003 · Zbl 1031.46061 · doi:10.1017/S0013091501000645
[25] Sehnem, CF, \({\rm C}^*\)-envelopes of tensor algebras of product systems, J. Funct. Anal., 283, 12, 2022 · Zbl 1509.46034 · doi:10.1016/j.jfa.2022.109707
[26] Sims, A., Gauge-invariant ideals in the \(C^*\)-algebras of finitely aligned higher-rank graphs, Can. J. Math., 58, 6, 1268-1290, 2006 · Zbl 1115.46050 · doi:10.4153/CJM-2006-045-2
[27] Sims, A.; Yeend, T., \(C^*\)-algebras associated to product systems of Hilbert bimodules, J. Oper. Theory, 64, 2, 349-376, 2010 · Zbl 1240.46080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.