×

On entropies for random partitions of the unit segment. (English) Zbl 1149.94003

Summary: We prove the complete convergence of Shannon’s, paired, genetic and \(\alpha\)-entropy for random partitions of the unit segment. We also derive exact expressions for expectations and variances of the above entropies using special functions.

MSC:

94A17 Measures of information, entropy
62G30 Order statistics; empirical distribution functions
60F15 Strong limit theorems

References:

[1] Baum L. E., Katz M.: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1968), 108-123 · Zbl 0142.14802 · doi:10.2307/1994170
[2] Bieniek M., Szynal D.: A contribution to results on random partitions of the segment. Internat. J. Pure and Appl. Math. 13 (2004), 3, 337-378 · Zbl 1059.62051
[3] Burbea N., Rao N.: Entropy differential metrics and divergence measures in probability spaces: a unified approach. J. Multivariate Anal. 12 (1982), 575-596 · Zbl 0526.60015 · doi:10.1016/0047-259X(82)90065-3
[4] Darling D. A.: On a class of problems related to the random division of an interval. Ann. Math. Statist. 24 (1953), 239-253 · Zbl 0053.09902 · doi:10.1214/aoms/1177729030
[5] Erdős P.: On a theorem of Hsu and Robbins. Ann. Math. Statist. 20 (1949), 286-291 · Zbl 0033.29001 · doi:10.1214/aoms/1177730037
[6] Feller W.: An Introduction to Probability Theory and its Applications. Vol. II. Wiley, New York 1966 · Zbl 0598.60003
[7] Goldstein S.: On entropy of random partitions of the segment \([0,1]\). Bull. Soc. Sci. Lett. Łódź XXIV 4 (1974), 1-7
[8] Gradstein I. S., Ryzyk I. M.: Tables of Integrals, Sums, Series and Products. Fourth edition. Academic Press, New York - London 1965
[9] Graham R. L., Knuth D. E., Patashnik O.: Concrete Mathematics. Addison-Wesley Publishing Company Advanced Book Program, Reading, MA 1989 · Zbl 0836.00001
[10] Ekstörm M.: Sum-functions of spacings of increasing order. J. Statist. Plann. Inference 136 (2006), 2535-2546 · Zbl 1090.62043 · doi:10.1016/j.jspi.2004.11.006
[11] Hall P.: Limit theorems for sums of general functions of \(m\)-spacings. Math. Proc. Cambridge Philos. Soc. 96 (1984), 517-532 · Zbl 0559.62013 · doi:10.1017/S0305004100062459
[12] Hall P.: On power distributional tests based on sample spacings. J. Multivariate Anal. 19 (1986), 201-224 · Zbl 0605.62038 · doi:10.1016/0047-259X(86)90027-8
[13] Hansen E. R.: A Table of Series and Products. Prentice-Hall, Englewood Clifts, N. J. 1975 · Zbl 0438.00001
[14] Havrda J., Charvát F.: Quantification method in classification process: Concept of structural \(\alpha \)-entropy. Kybernetika 3 (1967), 30-35 · Zbl 0178.22401
[15] Heyde C. C.: A suplement to the strong law of large numbers. J. Appl. Probab. 12 (1975), 173-175 · Zbl 0305.60008 · doi:10.2307/3212424
[16] Hsu P. L., Robbins H.: Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25-31 · Zbl 0030.20101 · doi:10.1073/pnas.33.2.25
[17] Latter B. D. H.: Measures of genetic distance between indviduals and populations. Publ. Univ. Hawai, Honolulu, Genetic Structure of Populations (1973), 27-39
[18] Menendez M. L., Morales D., Pardo, L., Salicrú M.: Asymptotic distribution of \(\{ h,\phi \} \)-entropies. Comm. Statist. - Theory Methods 22 (1993), 7, 2015-2031 · Zbl 0791.62005 · doi:10.1080/03610929308831131
[19] Misra N.: A new test if uniformity based on overlapping sample spacings. Comm. Statist. - Theory Methods 30 (2001), 7, 1435-1470 · Zbl 1009.62546 · doi:10.1081/STA-100104754
[20] Renyi A.: New nonadditive measures of entropy for discrete probability distributions. Proc. 4th Berkeley Symp. Math. Statist. and Prob. Vol. 1, 1961, pp. 547-561
[21] Shannon C. E.: A mathematical theory of communications. Bell System Tech. J. 27 (1948), 379-425, 623-656 · Zbl 1154.94303
[22] Shao Y., Jimenez R.: Entropy for random partitons and its applications. J. Theoret. Probab. 11 (1998), 417-433
[23] Slud E.: Entropy and maximal spacings for random partitions. Z. Warsch. verw. Gebiete 41 (1978), 341-352 · Zbl 0353.60019 · doi:10.1007/BF00533604
[24] Temme N. M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York 1996 · Zbl 0856.33001
[25] Srivastava H. M., Tu S.-T., Wu T.-C.: Some combinatorial series identities associated with the Digamma function and harmonic numbers. Appl. Math. Lett. 13 (2000), 101-106 · Zbl 0953.33001 · doi:10.1016/S0893-9659(99)00193-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.