×

A note on asymptotic behavior of critical Galton-Watson processes with immigration. (English) Zbl 1483.60123

Summary: In this somewhat didactic note we give a detailed alternative proof of the known result of C. Z. Wei and J. Winnicki [Stochastic Processes Appl. 31, No. 2, 261–282 (1989; Zbl 0673.60092)] which states that, under second-order moment assumptions on the offspring and immigration distributions, the sequence of appropriately scaled random step functions formed from a critical Galton-Watson process with immigration (not necessarily starting from zero) converges weakly towards a squared Bessel process. The proof of Wei and Winnicki [loc. cit.] is based on infinitesimal generators, while we use limit theorems for random step processes towards a diffusion process due to M. Ispány and G. Pap [Acta Math. Hung. 126, No. 4, 381–395 (2010; Zbl 1274.60109)]. This technique was already used by M. Ispány [Publ. Math. 72, No. 1–2, 17–34 (2008; Zbl 1164.60061)], who proved functional limit theorems for a sequence of some appropriately normalized nearly critical Galton-Watson processes with immigration starting from zero, where the offspring means tend to its critical value 1. As a special case of Theorem 2.1 of Ispány [2008, loc. cit.] one can get back the result of Wei and Winnicki [loc. cit.] in the case of zero initial value. In the present note we handle nonzero initial values with the technique used by Ispány [2008, loc. cit.], and further, we simplify some of the arguments in the proof of Theorem 2.1 of Ispány [2008, loc. cit.] as well.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60F17 Functional limit theorems; invariance principles

References:

[1] ; Aliev, Ukrain. Mat. Zh., 37, 656 (1985) · Zbl 0587.60085
[2] ; Athreya, Branching processes. Grundl. Math. Wissen., 196 (1972) · Zbl 0259.60002
[3] 10.1016/j.spa.2010.11.005 · Zbl 1241.62122 · doi:10.1016/j.spa.2010.11.005
[4] 10.1002/9780470316658 · doi:10.1002/9780470316658
[5] ; Feller, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, 227 (1951)
[6] 10.1214/aop/1176996496 · Zbl 0361.60062 · doi:10.1214/aop/1176996496
[7] ; Ikeda, Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, 24 (1989) · Zbl 0684.60040
[8] ; Ispány, Publ. Math. Debrecen, 72, 17 (2008) · Zbl 1164.60061
[9] 10.1007/s10474-009-9099-5 · Zbl 1274.60109 · doi:10.1007/s10474-009-9099-5
[10] 10.1080/07362994.2014.939542 · Zbl 1320.60144 · doi:10.1080/07362994.2014.939542
[11] 10.1239/aap/1118858637 · Zbl 1069.62065 · doi:10.1239/aap/1118858637
[12] 10.1007/978-3-662-05265-5 · doi:10.1007/978-3-662-05265-5
[13] ; Kawazu, Teor. Verojatnost. i Primenen., 16, 34 (1971)
[14] 10.1090/S0094-9000-09-00777-7 · Zbl 1224.60218 · doi:10.1090/S0094-9000-09-00777-7
[15] ; Lebedev, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 8, 58 (1985) · Zbl 0577.60079
[16] 10.1239/jap/1143936261 · Zbl 1098.60030 · doi:10.1239/jap/1143936261
[17] 10.1017/s0021900200095140 · doi:10.1017/s0021900200095140
[18] 10.1239/aap/1198177239 · Zbl 1205.60150 · doi:10.1239/aap/1198177239
[19] 10.1214/aos/1176325509 · Zbl 0807.62063 · doi:10.1214/aos/1176325509
[20] 10.1016/0304-4149(89)90092-6 · Zbl 0673.60092 · doi:10.1016/0304-4149(89)90092-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.