×

Data-driven subfilter modelling of thermo-diffusively unstable hydrogen-air premixed flames. (English) Zbl 1519.80286

MSC:

80A50 Chemistry (general) in thermodynamics and heat transfer
76V05 Reaction effects in flows

Software:

FlameMaster; Nek5000

References:

[1] Matalon, M., Flame dynamics, Proc. Combust. Inst., 32, 57-82 (2009) · doi:10.1016/j.proci.2008.08.002
[2] Creta, F.; Lapenna, P. E.; Lamioni, R.; Fogla, N.; Matalon, M., Propagation of premixed flames in the presence of Darrieus-Landau and thermal diffusive instabilities, Combust. Flame, 216, 256-270 (2020) · doi:10.1016/j.combustflame.2020.02.030
[3] Berger, L.; Kleinheinz, K.; Attili, A.; Pitsch, H., Characteristic patterns of thermodiffusively unstable premixed lean hydrogen flames, Proc. Combust. Inst., 37, 2, 1879-1886 (2019) · doi:10.1016/j.proci.2018.06.072
[4] Shanbhogue, S. J.; Sanusi, Y. S.; Taamallah, S.; Habib, M. A.; Mokheimer, E. M.A.; Ghoniem, A. F., Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH_4/H_2 combustion, Combust. Flame, 163, 494-507 (2016) · doi:10.1016/j.combustflame.2015.10.026
[5] Chterev, I.; Boxx, I., Effect of hydrogen enrichment on the dynamics of a lean technically premixed elevated pressure flame, Combust. Flame, 225, 149-159 (2021) · doi:10.1016/j.combustflame.2020.10.033
[6] Hawkes, E. R.; Chen, J. H., Direct numerical simulation of hydrogen-enriched lean premixed methane air flames, Combust. Flame, 138, 242-258 (2004) · doi:10.1016/j.combustflame.2004.04.010
[7] Lapenna, P. E.; Lamioni, R.; Creta, F., Subgrid modeling of intrinsic instabilities in premixed flame propagation, Proc. Combust. Inst., 38, 2001-2011 (2021) · doi:10.1016/j.proci.2020.06.192
[8] SB., Pope, Small scales, many species and the manifold challenges of turbulent, Proc. Combust. Inst., 34, 1-31 (2013) · doi:10.1016/j.proci.2012.09.009
[9] Wu, H.; Ihme, M., Compliance of combustion models for turbulent reacting flow simulations, Fuel, 186, 853-863 (2016) · doi:10.1016/j.fuel.2016.07.074
[10] Balarac, G.; Pitsch, H.; Raman, V., Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators, Phys. Fluids, 20 (2008) · Zbl 1182.76045
[11] Berger, L.; Kleinheinz, K.; Attili, A.; Bisetti, F.; Pitsch, H.; Mueller, M. E., Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models, Comb. Model., 22, 3, 480-504 (2018) · doi:10.1080/13647830.2018.1424353
[12] Molkov, V.; Makarov, D.; Grigorash, A., Cellular structure of explosion flames, modeling and large-eddy simulation, Comb. Sci. Tech., 176, 851-865 (2004) · doi:10.1080/00102200490428495
[13] Keppeler, R.; Tangermann, E.; Allaudin, U.; Pfitzner, M., LES of low to high turbulent combustion in an elevated pressure environment, Flow Turbulence Combust., 92, 767-802 (2014) · doi:10.1007/s10494-013-9525-1
[14] Fiorina, B.; Vicquelin, R.; Auzillon, P.; Darabiha, N.; Gicquel, O.; Veynante, D., A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame, 157, 465-475 (2010) · doi:10.1016/j.combustflame.2009.09.015
[15] Vreman, A. W.; van Oijen, J. A.; de Goey, L. P.H.; Bastiaans, R. J.M., Subgrid scale modeling in large-Eddy simulation of turbulent combustion using premixed flamelet chemistry, Flow Turbulence Combust., 82, 511-535 (2009) · Zbl 1259.76014 · doi:10.1007/s10494-008-9159-x
[16] Lapenna, P. E.; Lamioni, R.; Troiani, G.; Creta, F., Large scale effects in weakly turbulent premixed flames, Proc. Combust. Inst., 37, 2, 1945-1952 (2019) · doi:10.1016/j.proci.2018.06.154
[17] Creta, F.; Lamioni, R.; Lapenna, P. E.; Troiani, G., Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation, Phys. Rev. E, 94, 5 (2016) · doi:10.1103/PhysRevE.94.053102
[18] Lamioni, R.; Lapenna, P. E.; Troiani, G.; Creta, F., Strain rates, flow patterns and flame surface densities in hydrodynamically unstable, weakly turbulent premixed flames, Proc. Combust. Inst., 37, 2, 1815-1822 (2019) · doi:10.1016/j.proci.2018.06.196
[19] Lamioni, R.; Lapenna, P. E.; Troiani, G.; Creta, F., Flame induced flow features in the presence of Darrieus-Landau instability, Flow Turb. Combust., 101, 4, 1137-1155 (2018) · doi:10.1007/s10494-018-9936-0
[20] Lapenna, P. E.; Creta, F., Mixing under transcritical conditions: an a-priori study using direct numerical simulation, J. Supercrit. Fluids, 128, 263-278 (2017) · doi:10.1016/j.supflu.2017.05.005
[21] Lapenna, P.E., Lamioni, R., Ciottoli, P.P., and Creta, F., Low-Mach Number Simulations of Transcritical Flows AIAA-paper 2018-0346 (2018).
[22] Lapenna, P. E., Characterization of pseudo-boiling in a transcritical nitrogen jet, Phys. Fluids, 30, 7 (2018) · doi:10.1063/1.5038674
[23] Lapenna, P. E.; Creta, F., Direct numerical simulation of transcritical jets at moderate reynolds number, AIAA J., 57, 6, 2254-2263 (2019) · doi:10.2514/1.J058360
[24] Patera, A. T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 3, 468-488 (1984) · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[25] Fischer, P.F., Lottes, J.W., and Kerkemeier, S.G., nek5000 web page, http://nek5000.mcs.anl.gov (2008).
[26] Matalon, M.; Bechtold, J. K., Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders, J. Fluid Mech., 487, 179-210 (2003) · Zbl 1071.76066 · doi:10.1017/S0022112003004683
[27] Creta, F.; Matalon, M., Propagation of wrinkled turbulent flames in the context of hydrodynamic theory, J. Fluid Mech., 680, 225-264 (2011) · Zbl 1241.76437 · doi:10.1017/jfm.2011.157
[28] Matalon, M.; Matkowsky, B. J., Flames as gasdynamic discontinuities, J. Fluid Mech., 124, 239-259 (1982) · Zbl 0545.76133 · doi:10.1017/S0022112082002481
[29] Attili, A.; Lamioni, R.; Berger, L.; Kleinheinz, K.; Lapenna, P. E.; Pitsch, H.; Creta, F., The effect of pressure on the hydrodynamic stability limit of premixed flames, Proc. Combust. Inst., 38, 1973-1981 (2021) · doi:10.1016/j.proci.2020.06.091
[30] Lamioni, R.; E. Lapenna, P.; Berger, L.; Kleinheinz, K.; Attili, A.; Pitsch, H.; Creta, F., Pressure-induced hydrodynamic instability in premixed methane-Air slot flames, Combust. Sci. Technol., 192, 1998-2009 (2020) · doi:10.1080/00102202.2020.1768081
[31] Tomboulides, A.; Lee, J.; Orszag, S., Numerical simulation of low mach number reactive flows, J. Scientif. Comput., 12, 139-167 (1997) · Zbl 0905.76055 · doi:10.1023/A:1025669715376
[32] Zhou, Z.; Hernandez-Perez, F. E.; Shoshin, Y.; van Oijen, J. A.; de Goey, L. P.H., Effect of soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature, Combust. Theor. Model., 21, 879-896 (2017) · Zbl 1519.80245 · doi:10.1080/13647830.2017.1311028
[33] Burke, M. P.; Chaos, M.; Ju, Y.; Dryer, F. L.; Klippenstein, S. J., Comprehensive H_2/O_2 kinetic model for high-Pressure combustion, Int. J. Chem. Kinet., 44, 444-474 (2012) · doi:10.1002/kin.20603
[34] Desjardins, O.; Blanquart, G.; Balarac, G.; Pitsch, H., High order conservative finite difference scheme for variable density low mach number turbulent flows, J. Comput. Phys., 227, 7125-7159 (2008) · Zbl 1201.76139 · doi:10.1016/j.jcp.2008.03.027
[35] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[36] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503 · doi:10.1137/0705041
[37] Pitsch, H., FlameMaster, a C++ computer program for 0D combustion and 1D laminar flame calculations.
[38] Regele, J. D.; Knudsen, E.; Pitsch, H.; Blanquart, G., A two-equation model for non-unity lewis number differential diffusion in lean premixed laminar flames, Combust. Flame, 160, 240-250 (2013) · doi:10.1016/j.combustflame.2012.10.004
[39] de Swart, J. A.M.; Bastiaans, R. J.M.; van Oijen, J. A.; de Goey, L. P.H.; Cant, R. S., Inclusion of preferential diffusion in simulations of premixed combustion of hydrogen/Methane mixtures with flamelet generated manifolds, Flow Turb. Combust., 85, 473-511 (2010) · Zbl 1410.80011 · doi:10.1007/s10494-010-9279-y
[40] Vreman, A. W.; van Oijen, J. A.; de Goey, L. P.H.; Bastiaans, R. J.M., Direct numerical simulation of hydrogen addition in turbulent premixed bunsen flames using flamelet-generated manifold reduction, Int. J. Hydrogen Energy, 34, 2778-2788 (2009) · doi:10.1016/j.ijhydene.2009.01.075
[41] Gicquel, O.; Darabiha, N.; Thevenin, D., Laminar premixed hydrogen/air counterflow flame simulations using flame prolungation of ILDM with differential diffusion, Proc. Combust. Inst., 28, 1901-1908 (2000) · doi:10.1016/S0082-0784(00)80594-9
[42] Pope, S., Turbulent flows (2000), Cambridge University Press: Cambridge University Press, Cambridge, UK · Zbl 0966.76002
[43] Veynante, D.; Trouve, A.; Bray, K. N.C.; Mantel, T., Gradient and counter-gradient scalar transport in turbulent premixed flames, J. Fluid Mech., 332, 263-293 (1997) · Zbl 0900.76738 · doi:10.1017/S0022112096004065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.