×

Effective results for points on certain subvarieties of tori. (English) Zbl 1177.11054

Let \(X\) be a subvariety, and \(\Gamma\) a finitely generated subgroup, in \({\mathbb G}_m^N(\overline{\mathbb Q})\cong(\overline{\mathbb Q}^*)^N\). One considers the division group \(\overline\Gamma\) (given by \(x\in\overline\Gamma\) if \(x^m\in\Gamma\) for some \(m>0\)) and its associated sets \(X\cap\overline\Gamma_\varepsilon\) and \(X\cap C(\overline\Gamma,\varepsilon)\) in \({\mathbb G}_m^N(\overline{\mathbb Q})\). These are defined in terms of the Weil height \(h\) on \({\mathbb G}_m^N(\overline{\mathbb Q})\) by \(\overline\Gamma_\varepsilon=\{yz\mid y\in\overline\Gamma,\;h(z)<\varepsilon\}\) and \(C(\overline\Gamma,\varepsilon)=\{yz\mid y\in\overline\Gamma,\;h(z)<\varepsilon(1+h(y))\}\). The aim is to understand in detail the intersections of these sets with \(X\), for certain special \(X\).
By work of Poonen and others it is known that there exists an \(\varepsilon\) such that \(X\cap \overline\Gamma_\varepsilon\) is contained in a finite union \(x_1H_1\cup\cdots\cup x_tH_t\) of cosets of algebraic subgroups of \({\mathbb G}_m^N(\overline{\mathbb Q})\), with each \(x_iH_i\) contained in \(X\). This \(\varepsilon\) depends only on \(N\) and the degree of \(X\). In a similar spirit, it is known that \(X^0\cap C(\overline\Gamma,\varepsilon)\) is finite for some \(\epsilon>0\), where \(x\in X^0\) if \(x\in X\) but \(xH\not\subset X\) for any positive-dimensional subgroup \(H\) of \({\mathbb G}_m^N(\overline{\mathbb Q})\).
There are diophantine approximation results explicitly bounding heights of points in \(X\cap\overline\Gamma\) (etc.) in certain cases – for instance, for most curves \(X\) in the case \(N=2\) – coming from Baker-type logarithmic forms estimates. Using these results and some estimates of the number of points of small heights, the authors make the descriptions above effective, for certain classes of \(X\). For \(X\cap \overline\Gamma_\varepsilon\), they give an explicit \(\varepsilon\) and effectively computable bounds on the heights and degrees of the points \(x_i\). For \(X\cap C(\overline\Gamma,\varepsilon)\) they again give an explicit value for \(\varepsilon\) and also bounds on the heights and degrees of the elements of \(X\cap C(\overline\Gamma,\varepsilon)\).
Although the class of varieties \(X\) considered is rather restricted (either \(N=2\) and \(X\) a curve, or \(X\) cut out by bi- and trinomials), the method is more generally applicable at least in principle.

MSC:

11G50 Heights
14G05 Rational points
14L99 Algebraic groups
Full Text: DOI

References:

[1] Liardet, Astérisque 24–25 pp 187– (1975)
[2] DOI: 10.1007/BF01388597 · Zbl 0554.10009 · doi:10.1007/BF01388597
[3] Evertse, A panorama of number theory or the view from Baker’s garden pp 214– (2002)
[4] DOI: 10.1007/PL00012437 · Zbl 1030.11026 · doi:10.1007/PL00012437
[5] DOI: 10.2307/2047041 · Zbl 0672.15006 · doi:10.2307/2047041
[6] DOI: 10.2307/2152886 · Zbl 0861.14018 · doi:10.2307/2152886
[7] Voutier, Acta Arith. 74 pp 81– (1996)
[8] Bombieri, Heights in Diophantine Geometry (2006)
[9] Schmidt, Number Theory pp 157– (1996) · doi:10.1017/CBO9780511662003.008
[10] Beukers, Acta Arith. 79 pp 103– (1997)
[11] DOI: 10.1007/BF01305970 · Zbl 0973.11067 · doi:10.1007/BF01305970
[12] DOI: 10.1023/A:1020982431028 · Zbl 1101.14030 · doi:10.1023/A:1020982431028
[13] DOI: 10.1007/s002220050331 · Zbl 0995.11040 · doi:10.1007/s002220050331
[14] DOI: 10.1155/S1073792895000250 · Zbl 0848.11030 · doi:10.1155/S1073792895000250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.