×

Radon stationary measures for a random walk on \(\mathbb{T}^d\times\mathbb{R}\). (Mesures de Radon stationnaires pour une marche aléatoire sur \(\mathbb{T}^d\times\mathbb{R}\).) (French. English summary) Zbl 1519.37048

Summary: We classify Radon stationary measures for a random walk on \(\mathbb{T}^d\times\mathbb{R}\). This walk is realised by a random action of \(\mathrm{SL}_d(\mathbb{Z})\) on the \(\mathbb{T}^d\) component, coupled with a translation on the \(\mathbb{R}\) component. We show, under assumptions of irreducibility and recurrence, the rigidity and homogeneity of Radon ergodic stationary measures.

MSC:

37H12 Random iteration
37B20 Notions of recurrence and recurrent behavior in topological dynamical systems
37A50 Dynamical systems and their relations with probability theory and stochastic processes
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
60G50 Sums of independent random variables; random walks

References:

[1] Aaronson, Jon, An introduction to infinite ergodic theory, 50, xii+284 p. pp. (1997), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0882.28013 · doi:10.1090/surv/050
[2] Bénard, Timothée, Marches aléatoires sur des espaces homogènes de volume infini (2021)
[3] Benoist, Yves; Quint, Jean-François, Mesures stationnaires et fermés invariants des espaces homogènes, Ann. of Math. (2), 174, 2, 1111-1162 (2011) · Zbl 1241.22007 · doi:10.4007/annals.2011.174.2.8
[4] Benoist, Yves; Quint, Jean-François, Stationary measures and invariant subsets of homogeneous spaces (II), J. Amer. Math. Soc., 26, 3, 659-734 (2013) · Zbl 1268.22011 · doi:10.1090/S0894-0347-2013-00760-2
[5] Benoist, Yves; Quint, Jean-François, Random walks on reductive groups, 62, xi+323 p. pp. (2016), Springer: Springer, Cham · Zbl 1366.60002 · doi:10.1007/978-3-319-47721-3
[6] Bony, Jean-Michel, Représentation intégrale sur les cônes convexes faiblement complets, Séminaire Choquet. Initiation à l’analyse, 3, 7 p. pp. (1964) · Zbl 0139.07901
[7] Bourgain, Jean; Furman, Alex; Lindenstrauss, Elon; Mozes, Shahar, Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, J. Amer. Math. Soc., 24, 1, 231-280 (2011) · Zbl 1239.37005 · doi:10.1090/S0894-0347-2010-00674-1
[8] Brown, Aaron; Rodriguez Hertz, Federico, Measure rigidity for random dynamics on surfaces and related skew products, J. Amer. Math. Soc., 30, 4, 1055-1132 (2017) · Zbl 1379.37055 · doi:10.1090/jams/877
[9] Deny, Jacques, Sur l’équation de convolution \(\mu = \mu \star \sigma \), Séminaire Brelot-Choquet-Deny. Théorie du potentiel, 4, 11 p. pp. (19591960)
[10] Dufloux, Laurent, Dimension de Hausdorff des ensembles limites (2015)
[11] Eskin, Alex; Mirzakhani, Maryam, Invariant and stationnary measures for the \({SL}_2(\mathbb{R})\)-action on Moduli space, Publication mathématique de l’IHES, 127, 95-324 (2018) · Zbl 1478.37002 · doi:10.1007/s10240-018-0099-2
[12] He, Weikun; de Saxcé, Nicolas, Linear random walks on the torus (2019)
[13] Lawler, Gregory F.; Limic, Vlada, Random walk : a modern introduction, 123, xii+364 p. pp. (2010), Cambridge University Press, Cambridge · Zbl 1210.60002 · doi:10.1017/CBO9780511750854
[14] Sargent, Oliver; Shapira, Uri, Dynamics on the space of 2-lattices in 3-space, Geom. Funct. Anal., 29, 3, 890-948 (2019) · Zbl 1421.22007 · doi:10.1007/s00039-019-00493-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.