×

A global picture for the planar Ricker map: convergence to fixed points and identification of the stable/unstable manifolds. (English) Zbl 1519.39012

Summary: A quadratic Lyapunov function is demonstrated for the non-invertible planar Ricker map \((x, y) \mapsto (xe^{r-x-\alpha y}, ye^{s-y-\beta x})\) which shows that for \(\alpha\), \(\beta > 0\), and \(0 < r\), \(s \leq 2\) all orbits of the planar Ricker map converge to a fixed point. We establish that for \(0<r\), \(s<2\), whenever a positive equilibrium exists and is locally asymptotically stable, it is globally asymptotically stable (i.e. attracts all of \((0, \infty)^2)\). Our approach bypasses and improves on methods that rely on monotonicity, which require \(0 < r\), \(s \leq 1\). We also use the Lyapunov function to identify the one-dimensional stable and unstable manifolds when the positive fixed point exists and is a hyperbolic saddle.

MSC:

39A30 Stability theory for difference equations
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
92D25 Population dynamics (general)
92D40 Ecology

References:

[1] Ambrosetti, A.; Prodi, G., A Primer of Nonlinear Analysis (1995), Cambridge University Press · Zbl 0818.47059
[2] Baigent, S.; S., Bullett; T., Fearn; F., Smith, LTCC Advanced Mathematics Series, Vol. 5, Lotka-Volterra dynamical systems, 157-188 (2017), Dynamical and Complex Systems, World Scientific · Zbl 1417.37005
[3] Baigent, S.; Hou, Z., Global stability of discrete-time competitive population models, J. Differ. Equ. Appl., 23, 1378-1396 (2007) · Zbl 1379.92046
[4] Balreira, E. C.; Elaydi, S.; Luís, R., Local stability implies global stability for the planar Ricker competition model, Discrete Contin. Dyn. Syst Ser. B, 19, 323-351 (2014) · Zbl 1282.39016
[5] Crossley, M. D., Essential Topology (2005), Springer-Verlag: Springer-Verlag, London · Zbl 1079.55001
[6] Elaydi, S.; Luís, R., Open problems in some competition models, J. Differ. Equ. Appl., 17, 1873-1877 (2011) · Zbl 1228.39001
[7] England, J. P.; Krauskopf, B.; Osinga, H. M., Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse, SIAM J. Appl. Dyn. Syst., 3, 161-190 (2004) · Zbl 1059.37067
[8] Fisher, M. E.; Goh, B. S., Stability in a class of discrete time models of interacting populations, J. Math. Biol., 4, 265-274 (1977) · Zbl 0381.92019
[9] Gyllenbeg, M.; Jiang, J.; Niu, L.; Yan, P., On the dynamics of multi-species Ricker models admitting a carrying simplex, J. Differ. Equ. Appl., 25, 1489-1530 (2019) · Zbl 1429.37010
[10] Hirsch, M. W., On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn., 2, 169-179 (2008) · Zbl 1152.92026
[11] Hou, Z., On existence and uniqueness of a modified carrying simplex for discrete Kolmogorov systems, J. Differ. Equ. Appl., 27, 284-315 (2021) · Zbl 1475.37102
[12] Jiang, H.; Rogers, T. D., The discrete dynamics of symmetric competition in the plane, J. Math. Biol., 25, 573-596 (1987) · Zbl 0668.92011
[13] Kulakov, M.; Neverova, G.; Frisman, E., The Ricker competition model of two species: Dynamic modes and phase multistability, Mathematics, 10, 1076 (2022)
[14] LaSalle, J. P., The Stability and Control of Discrete Processes (1986), Springer-Verlag, Inc.: Springer-Verlag, Inc., New York · Zbl 0606.93001
[15] Lyubich, Y. I., Mathematical Structures in Population Genetics, 22 (1992), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0747.92019
[16] Losert, V.; Akin, E., Dynamics of games and genes: Discrete versus continuous time, J. Math. Biol., 17, 241-251 (1983) · Zbl 0519.92014
[17] Luís, R.; Elaydi, S.; Oliveira, H., Stability of a Ricker-type competition model and the competitive exclusion principle, J. Biol. Dyn., 5, 636-660 (2011) · Zbl 1236.92070
[18] May, R. M., Biological populations obeying difference equations: Stable points, stable cycles, and chaos, J. Theor. Biol., 51, 511-524 (1975)
[19] Ricker, W. E., Stock and recruitment, J. Fish. Res., 11, 559-623 (1954)
[20] Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (1998), CRC press
[21] Ruiz-Herrera, A., Exclusion and dominance in discrete population models via the carrying simplex, J. Differ. Equ. Appl., 19, 96-113 (2013) · Zbl 1303.92107
[22] Ryals, B., A note on a parameter bound for global stability in the 2D coupled Ricker equation, J. Differ. Equ. Appl., 24, 240-244 (2018) · Zbl 1456.37104
[23] Ryals, B.; Sacker, R. J., Global stability in the 2D Ricker equation, J. Differ. Equ. Appl., 21, 1068-1081 (2015) · Zbl 1341.39006
[24] Ryals, B.; Sacker, R. J., Global stability in the 2D Ricker equation revisited, Discrete Contin. Dyn. Syst Ser. B, 22, 585-604 (2016) · Zbl 1362.39024
[25] Smith, H. L., Planar competitive and cooperative difference equations, J. Differ. Equ. Appl., 3, 335-357 (1998) · Zbl 0907.39004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.