×

Imperfect vaccine can yield multiple Nash equilibria in vaccination games. (English) Zbl 1518.92083

Summary: As infectious diseases continue to threaten communities across the globe, people are faced with a choice to vaccinate, or not. Many factors influence this decision, such as the cost of the disease, the chance of contracting the disease, the population vaccination coverage, and the efficacy of the vaccine. While the vaccination games in which individuals decide whether to vaccinate or not based on their own interests are gaining in popularity in recent years, the vaccine imperfection has been an overlooked aspect so far. In this paper we investigate the effects of an imperfect vaccine on the outcomes of a vaccination game. We use a simple SIR compartmental model for the underlying model of disease transmission. We model the vaccine imperfection by adding vaccination at birth and maintain a possibility for the vaccinated individual to become infected. We derive explicit conditions for the existence of different Nash equilibria, the solutions of the vaccination game. The outcomes of the game depend on the complex interplay between disease transmission dynamics (the basic reproduction number), the relative cost of the infection, and the vaccine efficacy. We show that for diseases with relatively low basic reproduction numbers (smaller than about 2.62), there is a little difference between outcomes for perfect or imperfect vaccines and thus the simpler models assuming perfect vaccines are good enough. However, when the basic reproduction number is above 2.62, then, unlike in the case of a perfect vaccine, there can be multiple equilibria. Moreover, unless there is a mandatory vaccination policy in place that would push the vaccination coverage above the value of unstable Nash equilibrium, the population could eventually slip to the “do not vaccinate” state. Thus, for diseases that have relatively high basic reproduction numbers, the potential for the vaccine not being perfect should be explicitly considered in the models.

MSC:

92C60 Medical epidemiology
91A80 Applications of game theory
Full Text: DOI

References:

[1] Ganusov, V. V.; Antia, R., Imperfect vaccines and the evolution of pathogens causing acute infections in vertebrates, Evolution, 60, 5, 957-969 (2006)
[2] Chen, X.; Fu, F., Imperfect vaccine and hysteresis, Proc. R. Soc. B, 286, 1894, Article 20182406 pp. (2019)
[3] Maskin, E., Nash equilibrium and welfare optimality, Rev. Econom. Stud., 66, 1, 23-38 (1999) · Zbl 0956.91034
[4] Reluga, T. C.; Bauch, C. T.; Galvani, A. P., Evolving public perceptions and stability in vaccine uptake, Math. Biosci., 204, 2, 185-198 (2006) · Zbl 1104.92042
[5] Reluga, T. C.; Galvani, A. P., A general approach for population games with application to vaccination, Math. Biosci., 230, 2, 67-78 (2011) · Zbl 1211.92049
[6] Bauch, C. T.; Earn, D. J., Vaccination and the theory of games, Proc. Natl. Acad. Sci., 101, 36, 13391-13394 (2004) · Zbl 1064.91029
[7] Wang, Z.; Bauch, C. T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; Perra, N.; Salathé, M.; Zhao, D., Statistical physics of vaccination, Phys. Rep., 664, 1-113 (2016) · Zbl 1359.92111
[8] Chang, S. L.; Piraveenan, M.; Pattison, P.; Prokopenko, M., Game theoretic modelling of infectious disease dynamics and intervention methods: a review, J. Biol. Dyn., 14, 1, 57-89 (2020) · Zbl 1447.92405
[9] Verelst, F.; Willem, L.; Beutels, P., Behavioural change models for infectious disease transmission: a systematic review (2010-2015), J. R. Soc. Interface, 13, 125, Article 20160820 pp. (2016)
[10] Bauch, C. T.; Galvani, A. P.; Earn, D. J., Group interest versus self-interest in smallpox vaccination policy, Proc. Natl. Acad. Sci., 100, 18, 10564-10567 (2003) · Zbl 1065.92038
[11] Molina, C.; Earn, D. J., Game theory of pre-emptive vaccination before bioterrorism or accidental release of smallpox, J. R. Soc. Interface, 12, 107, Article 20141387 pp. (2015)
[12] Liu, J.; Kochin, B. F.; Tekle, Y. I.; Galvani, A. P., Epidemiological game-theory dynamics of chickenpox vaccination in the USA and Israel, J. R. Soc. Interface, 9, 66, 68-76 (2012)
[13] Bankuru, S. V.; Kossol, S.; Hou, W.; Mahmoudi, P.; Rychtář, J.; Taylor, D., A game-theoretic model of monkeypox to assess vaccination strategies, PeerJ, 8, Article e9272 pp. (2020)
[14] Augsburger, I. B.; Galanthay, G. K.; Tarosky, J. H.; Rychtář, J.; Taylor, D., Voluntary vaccination may not stop monkeypox outbreak: a game-theoretic model, PLOS Negl. Trop. Dis., 16, 12, Article e0010970 pp. (2022)
[15] Cheng, E.; Gambhirrao, N.; Patel, R.; Zhowandai, A.; Rychtář, J.; Taylor, D., A game-theoretical analysis of Poliomyelitis vaccination, J. Theoret. Biol., 499, Article 110298 pp. (2020) · Zbl 1455.92083
[16] Shim, E.; Grefenstette, J. J.; Albert, S. M.; Cakouros, B. E.; Burke, D. S., A game dynamic model for vaccine skeptics and vaccine believers: measles as an example, J. Theoret. Biol., 295, 194-203 (2012) · Zbl 1336.92087
[17] Shim, E.; Chapman, G. B.; Townsend, J. P.; Galvani, A. P., The influence of altruism on influenza vaccination decisions, J. R. Soc. Interface, 9, 74, 2234-2243 (2012)
[18] Brettin, A.; Rossi-Goldthorpe, R.; Weishaar, K.; Erovenko, I. V., Ebola could be eradicated through voluntary vaccination, Royal Soc. Open Sci., 5, 1, Article 171591 pp. (2018)
[19] Agusto, F. B.; Erovenko, I. V.; Fulk, A.; Abu-Saymeh, Q.; Romero-Alvarez, D.; Ponce, J.; Sindi, S.; Ortega, O.; Saint Onge, J. M.; Peterson, A. T., To isolate or not to isolate: The impact of changing behavior on COVID-19 transmission, BMC Publ. Health, 22, 1, 1-20 (2022)
[20] Choi, W.; Shim, E., Optimal strategies for social distancing and testing to control COVID-19, J. Theoret. Biol., 512, Article 110568 pp. (2021)
[21] Piraveenan, M.; Sawleshwarkar, S.; Walsh, M.; Zablotska, I.; Bhattacharyya, S.; Farooqui, H. H.; Bhatnagar, T.; Karan, A.; Murhekar, M.; Zodpey, S., Optimal governance and implementation of vaccination programmes to contain the COVID-19 pandemic, R. Soc. Open Sci., 8, 6, Article 210429 pp. (2021)
[22] Klein, S. R.M.; Foster, A. O.; Feagins, D. A.; Rowell, J. T.; Erovenko, I. V., Optimal voluntary and mandatory insect repellent usage and emigration strategies to control the chikungunya outbreak on Reunion Island, PeerJ, 8, Article e10151 pp. (2020)
[23] Scheckelhoff, K.; Ejaz, A.; Erovenko, I. V.; Rychtář, J.; Taylor, D., Optimal voluntary vaccination of adults and adolescents can help eradicate hepatitis B in China, Games, 12, 4, 82 (2021) · Zbl 1484.92062
[24] Chouhan, A.; Maiwand, S.; Ngo, M.; Putalapattu, V.; Rychtář, J.; Taylor, D., Game-theoretical model of retroactive Hepatitis B vaccination in China, Bull. Math. Biol., 82, 6, 1-18 (2020) · Zbl 1453.92186
[25] Acosta-Alonzo, C. B.; Erovenko, I. V.; Lancaster, A.; Oh, H.; Rychtář, J.; Taylor, D., High endemic levels of typhoid fever in rural areas of Ghana may stem from optimal voluntary vaccination behaviour, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 476, 2241, Article 20200354 pp. (2020) · Zbl 1472.92192
[26] Kobe, J.; Pritchard, N.; Short, Z.; Erovenko, I. V.; Rychtář, J.; Rowell, J. T., A game-theoretic model of cholera with optimal personal protection strategies, Bull. Math. Biol., 80, 10, 2580-2599 (2018) · Zbl 1400.92506
[27] Who, J., Yellow fever (2019), https://www.who.int/news-room/fact-sheets/detail/yellow-fever. (Accessed June 30, 2022)
[28] Cdc, J., Measles, Mumps, and Rubella (MMR) Vaccination: What Everyone Should Know (2021), https://www.cdc.gov/vaccines/vpd/mmr/public/index.html. (Accessed June 30, 2022)
[29] Baxter, R.; Ray, P.; Tran, T. N.; Black, S.; Shinefield, H. R.; Coplan, P. M.; Lewis, E.; Fireman, B.; Saddier, P., Long-term effectiveness of varicella vaccine: a 14-year, prospective cohort study, Pediatrics, 131, 5, e1389-e1396 (2013)
[30] Guris, D.; Jumaan, A. O.; Mascola, L.; Watson, B. M.; Zhang, J. X.; Chaves, S. S.; Gargiullo, P.; Perella, D.; Civen, R.; Seward, J. F., Changing varicella epidemiology in active surveillance sites—United States, 1995-2005, J. Infect. Dis., 197, Suppl. 2, S71-S75 (2008)
[31] Mohammed-Awel, J.; Numfor, E.; Zhao, R.; Lenhart, S., A new mathematical model studying imperfect vaccination: Optimal control analysis, J. Math. Anal. Appl., 500, 2, Article 125132 pp. (2021) · Zbl 1465.92063
[32] Gandon, S.; Mackinnon, M. J.; Nee, S.; Read, A. F., Imperfect vaccines and the evolution of pathogen virulence, Nature, 414, 6865, 751-756 (2001)
[33] Gumel, A.; McCluskey, C. C.; van den Driessche, P., Mathematical study of a staged-progression HIV model with imperfect vaccine, Bull. Math. Biol., 68, 8, 2105-2128 (2006) · Zbl 1296.92124
[34] Gumel, A. B.; McCluskey, C. C.; Watmough, J., An SVEIR model for assessing potential impact of an imperfect anti-SARS vaccine, Math. Biosci. Eng., 3, 3, 485 (2006) · Zbl 1092.92039
[35] Teboh-Ewungkem, M. I.; Podder, C. N.; Gumel, A. B., Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics, Bull. Math. Biol., 72, 1, 63-93 (2010) · Zbl 1184.92033
[36] Safi, M. A.; Melesse, D. Y.; Gumel, A. B., Dynamics analysis of a multi-strain cholera model with an imperfect vaccine, Bull. Math. Biol., 75, 7, 1104-1137 (2013) · Zbl 1272.92037
[37] Egonmwan, A.; Okuonghae, D., Mathematical analysis of a tuberculosis model with imperfect vaccine, Int. J. Biomath., 12, 07, Article 1950073 pp. (2019) · Zbl 1426.92040
[38] Iboi, E. A.; Ngonghala, C. N.; Gumel, A. B., Will an imperfect vaccine curtail the COVID-19 pandemic in the US?, Infect. Dis. Model., 5, 510-524 (2020)
[39] Magori, K.; Park, A. W., The evolutionary consequences of alternative types of imperfect vaccines, J. Math. Biol., 68, 4, 969-987 (2014) · Zbl 1291.92100
[40] Peng, X.-L.; Xu, X.-J.; Small, M.; Fu, X.; Jin, Z., Prevention of infectious diseases by public vaccination and individual protection, J. Math. Biol., 73, 6, 1561-1594 (2016) · Zbl 1350.92054
[41] Abboubakar, H.; Kamgang, J. C.; Nkamba, L. N.; Tieudjo, D., Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, J. Math. Biol., 76, 1, 379-427 (2018) · Zbl 1393.37098
[42] Arino, J.; Milliken, E., Bistability in deterministic and stochastic SLIAR-type models with imperfect and waning vaccine protection, J. Math. Biol., 84, 7, 1-31 (2022) · Zbl 1496.92041
[43] Shim, E.; Galvani, A. P., Distinguishing vaccine efficacy and effectiveness, Vaccine, 30, 47, 6700-6705 (2012)
[44] Longini, I. M.; Halloran, M. E.; Haber, M., Estimation of vaccine efficacy from epidemics of acute infectious agents under vaccine-related heterogeneity, Math. Biosci., 117, 1-2, 271-281 (1993) · Zbl 0786.62102
[45] Ball, F. G.; Lyne, O. D., Optimal vaccination policies for stochastic epidemics among a population of households, Math. Biosci., 177, 333-354 (2002) · Zbl 0996.92032
[46] Ball, F.; Britton, T., An epidemic model with infector and exposure dependent severity, Math. Biosci., 218, 2, 105-120 (2009) · Zbl 1160.92034
[47] Kribs-Zaleta, C. M.; Velasco-Hernández, J. X., A simple vaccination model with multiple endemic states, Math. Biosci., 164, 2, 183-201 (2000) · Zbl 0954.92023
[48] Shim, E., A note on epidemic models with infective immigrants and vaccination, Math. Biosci. Eng., 3, 3, 557 (2006) · Zbl 1118.34081
[49] Shim, E.; Feng, Z.; Martcheva, M.; Castillo-Chavez, C., An age-structured epidemic model of rotavirus with vaccination, J. Math. Biol., 53, 4, 719-746 (2006) · Zbl 1113.92045
[50] Shim, E.; Galvani, A. P., Impact of transmission dynamics on the cost-effectiveness of rotavirus vaccination, Vaccine, 27, 30, 4025-4030 (2009)
[51] Wu, B.; Fu, F.; Wang, L., Imperfect vaccine aggravates the long-standing dilemma of voluntary vaccination, PLoS One, 6, 6, Article e20577 pp. (2011)
[52] Kuga, K.; Tanimoto, J., Which is more effective for suppressing an infectious disease: imperfect vaccination or defense against contagion?, J. Stat. Mech. Theory Exp., 2018, 2, Article 023407 pp. (2018) · Zbl 1459.92056
[53] Beatty, A. L.; Peyser, N. D.; Butcher, X. E.; Cocohoba, J. M.; Lin, F.; Olgin, J. E.; Pletcher, M. J.; Marcus, G. M., Analysis of COVID-19 vaccine type and adverse effects following vaccination, JAMA Netw. Open, 4, 12, e2140364 (2021)
[54] Riad, A.; Pokorná, A.; Attia, S.; Klugarová, J.; Koščík, M.; Klugar, M., Prevalence of COVID-19 vaccine side effects among healthcare workers in the Czech Republic, J. Clin. Med., 10, 7, 1428 (2021)
[55] Ciccarese, G.; Drago, F.; Boldrin, S.; Pattaro, M.; Parodi, A., Sudden onset of vitiligo after COVID-19 vaccine, Dermatol. Therapy (2022)
[56] Clark, A.; Jit, M.; Warren-Gash, C.; Guthrie, B.; Wang, H. H.; Mercer, S. W.; Sanderson, C.; McKee, M.; Troeger, C.; Ong, K. L., Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study, Lancet Global Health, 8, 8, e1003-e1017 (2020)
[57] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.