×

Evaluation of Feynman integrals with arbitrary complex masses via series expansions. (English) Zbl 1523.81077

Summary: We present an algorithm to evaluate multiloop Feynman integrals with an arbitrary number of internal massive lines, with the masses being in general complex-valued, and its implementation in the Mathematica package SeaSyde. The implementation solves by series expansions the system of differential equations satisfied by the Master Integrals. At variance with respect to other existing codes, the analytical continuation of the solution is performed in the complex plane associated to each kinematical invariant. We present the results of the evaluation of the Master Integrals relevant for the NNLO QCD-EW corrections to the neutral-current Drell-Yan processes.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
55P35 Loop spaces
81S40 Path integrals in quantum mechanics
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
32D15 Continuation of analytic objects in several complex variables
81V05 Strong interaction, including quantum chromodynamics

References:

[1] Heinrich, G., Phys. Rep., 922, 1-69 (2021) · Zbl 1509.81614
[2] Weinzierl, S., Feynman integrals (1.2022)
[3] Bourjaily, J. L., (2022 Snowmass Summer Study (2022))
[4] Abreu, S.; Britto, R.; Duhr, C., The SAGEX review on scattering amplitudes (3.2022), Chapter 3: Mathematical structures in Feynman integrals
[5] Blümlein, J.; Schneider, C., The SAGEX review on scattering amplitudes (3.2022), Chapter 4: Multi-loop Feynman Integrals
[6] Smirnov, A. V., Comput. Phys. Commun., 204, 189-199 (2016) · Zbl 1378.65075
[7] Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S. P.; Kerner, M.; Schlenk, J.; Zirke, T., Comput. Phys. Commun., 222, 313-326 (2018) · Zbl 07693053
[8] Kotikov, A., Phys. Lett. B, 254, 158-164 (1991)
[9] Kotikov, A. V., Phys. Lett. B. Phys. Lett. B, Phys. Lett. B, 295, 409-127 (1992), (Erratum)
[10] Bern, Z.; Dixon, L. J.; Kosower, D. A., Nucl. Phys. B, 412, 751-816 (1994) · Zbl 1007.81512
[11] Remiddi, E., Nuovo Cimento A, 110, 1435-1452 (1997)
[12] Gehrmann, T.; Remiddi, E., Nucl. Phys. B, 580, 485-518 (2000) · Zbl 1071.81089
[13] Argeri, M.; Mastrolia, P., Int. J. Mod. Phys. A, 22, 4375-4436 (2007) · Zbl 1141.81325
[14] Henn, J. M., Phys. Rev. Lett., 110, Article 251601 pp. (2013)
[15] Henn, J. M., J. Phys. A, 48, Article 153001 pp. (2015) · Zbl 1312.81078
[16] Goncharov, A., (Proceedings of the International Congress of Mathematicians 1,2 (1995)), 374-387 · Zbl 0849.11087
[17] Goncharov, A. B., Math. Res. Lett., 5, 497-516 (1998) · Zbl 0961.11040
[18] Goncharov, A. B., Multiple polylogarithms and mixed Tate motives (3.2001)
[19] Remiddi, E.; Vermaseren, J., Int. J. Mod. Phys. A, 15, 725-754 (2000) · Zbl 0951.33003
[20] Gehrmann, T.; Remiddi, E., Comput. Phys. Commun., 141, 296-312 (2001) · Zbl 0991.65022
[21] Gehrmann, T.; Remiddi, E., Comput. Phys. Commun., 144, 200-223 (2002) · Zbl 1001.65020
[22] Bauer, C. W.; Frink, A.; Kreckel, R., Introduction to the GiNaC framework for symbolic computation within the C++ programming language (2000)
[23] Vollinga, J.; Weinzierl, S., Comput. Phys. Commun., 167, 177 (2005) · Zbl 1196.65045
[24] Bonciani, R.; Degrassi, G.; Vicini, A., Comput. Phys. Commun., 182, 1253-1264 (2011) · Zbl 1262.65035
[25] Naterop, L.; Signer, A.; Ulrich, Y., Comput. Phys. Commun., 253, Article 107165 pp. (2020) · Zbl 1535.65032
[26] Adams, L.; Bogner, C.; Schweitzer, A.; Weinzierl, S., J. Math. Phys., 57, 12, Article 122302 pp. (2016) · Zbl 1353.81097
[27] Remiddi, E.; Tancredi, L., Nucl. Phys. B, 925, 212-251 (2017) · Zbl 1375.81109
[28] Broedel, J.; Duhr, C.; Dulat, F.; Tancredi, L., J. High Energy Phys., 05, Article 093 pp. (2018)
[29] Broedel, J.; Duhr, C.; Dulat, F.; Tancredi, L., Phys. Rev. D, 97, 11, Article 116009 pp. (2018)
[30] Broedel, J.; Duhr, C.; Dulat, F.; Penante, B.; Tancredi, L., J. High Energy Phys., 08, Article 014 pp. (2018)
[31] Ablinger, J.; Blümlein, J.; De Freitas, A.; van Hoeij, M.; Imamoglu, E.; Raab, C. G.; Radu, C. S.; Schneider, C., J. Math. Phys., 59, 6, Article 062305 pp. (2018) · Zbl 1394.81164
[32] Walden, M.; Weinzierl, S., Comput. Phys. Commun., 265, Article 108020 pp. (2021)
[33] Czakon, M., Phys. Lett. B, 664, 307-314 (2008)
[34] Mandal, M. K.; Zhao, X., J. High Energy Phys., 03, Article 190 pp. (2019)
[35] Pozzorini, S.; Remiddi, E., Comput. Phys. Commun., 175, 381-387 (2006) · Zbl 1196.81075
[36] Aglietti, U.; Bonciani, R.; Grassi, L.; Remiddi, E., Nucl. Phys. B, 789, 45-83 (2008) · Zbl 1151.81364
[37] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., J. High Energy Phys., 03, Article 008 pp. (2018)
[38] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., J. High Energy Phys., 07, Article 102 pp. (2018)
[39] Bonciani, R.; Degrassi, G.; Giardino, P. P.; Groeber, R., Comput. Phys. Commun., 241, 122-131 (2019) · Zbl 07674789
[40] Fael, M.; Lange, F.; Schönwald, K.; Steinhauser, M., J. High Energy Phys., 09, Article 152 pp. (2021)
[41] Fael, M.; Lange, F.; Schönwald, K.; Steinhauser, M., Phys. Rev. Lett., 128, 17, Article 172003 pp. (2022)
[42] Moriello, F., J. High Energy Phys., 01, Article 150 pp. (2020)
[43] Hidding, M., Comput. Phys. Commun., 269, Article 108125 pp. (2021) · Zbl 1518.65150
[44] Bonciani, R.; Del Duca, V.; Frellesvig, H.; Henn, J. M.; Hidding, M.; Maestri, L.; Moriello, F.; Salvatori, G.; Smirnov, V. A., J. High Energy Phys., 01, Article 132 pp. (2020)
[45] Frellesvig, H.; Hidding, M.; Maestri, L.; Moriello, F.; Salvatori, G., J. High Energy Phys., 06, Article 093 pp. (2020)
[46] Abreu, S.; Ita, H.; Moriello, F.; Page, B.; Tschernow, W.; Zeng, M., J. High Energy Phys., 11, Article 117 pp. (2020)
[47] Dubovyk, I.; Freitas, A.; Gluza, J.; Grzanka, K.; Hidding, M.; Usovitsch, J., Evaluation of multi-loop multi-scale Feynman integrals for precision physics (1.2022)
[48] Bonciani, R.; Buonocore, L.; Grazzini, M.; Kallweit, S.; Rana, N.; Tramontano, F.; Vicini, A., Mixed strong-electroweak corrections to the Drell-Yan process (6.2021)
[49] Becchetti, M.; Bonciani, R.; Del Duca, V.; Hirschi, V.; Moriello, F.; Schweitzer, A., Phys. Rev. D, 103, 5, Article 054037 pp. (2021)
[50] Becchetti, M.; Moriello, F.; Schweitzer, A., Two-loop amplitude for mixed QCD-EW corrections to \(g g \to H g (12.2021)\)
[51] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Nucl. Phys. B, 560, 33-65 (1999)
[52] Denner, A.; Dittmaier, S.; Roth, M.; Wieders, L. H., Nucl. Phys. B. Nucl. Phys. B, Nucl. Phys. B, 854, 504-507 (2012), (Erratum)
[53] Armadillo, T.; Bonciani, R.; Devoto, S.; Rana, N.; Vicini, A., J. High Energy Phys., 05, Article 072 pp. (2022)
[54] Tkachov, F., Phys. Lett. B, 100, 65-68 (1981)
[55] Chetyrkin, K.; Tkachov, F., Nucl. Phys. B, 192, 159-204 (1981)
[56] Laporta, S., Int. J. Mod. Phys. A, 15, 5087-5159 (2000) · Zbl 0973.81082
[57] Anastasiou, C.; Lazopoulos, A., J. High Energy Phys., 07, Article 046 pp. (2004)
[58] Studerus, C., Comput. Phys. Commun., 181, 1293-1300 (2010) · Zbl 1219.81133
[59] von Manteuffel, A.; Studerus, C., Reduze 2 - distributed Feynman integral reduction (2012)
[60] Lee, R. N., Presenting LiteRed: a tool for the loop InTEgrals REDuction (2012)
[61] Lee, R. N., J. Phys. Conf. Ser., 523, Article 012059 pp. (2014)
[62] Smirnov, A. V., J. High Energy Phys., 10, Article 107 pp. (2008) · Zbl 1245.81033
[63] Smirnov, A. V., Comput. Phys. Commun., 189, 182-191 (2014) · Zbl 1344.81030
[64] Maierhoefer, P.; Usovitsch, J.; Uwer, P., Kira - a Feynman integral reduction program (2017) · Zbl 1498.81004
[65] Klappert, J.; Lange, F.; Maierhöfer, P.; Usovitsch, J., Comput. Phys. Commun., 266, Article 108024 pp. (2021) · Zbl 1523.81078
[66] Bonciani, R.; Di Vita, S.; Mastrolia, P.; Schubert, U., J. High Energy Phys., 09, Article 091 pp. (2016)
[67] Chen, K.-T., Bull. Am. Math. Soc., 83, 831-879 (1977) · Zbl 0389.58001
[68] Liu, X.; Ma, Y.-Q., AMFlow: a Mathematica package for Feynman integrals computation via auxiliary mass flow (1.2022)
[69] Chawdhry, H. A.; Czakon, M. L.; Mitov, A.; Poncelet, R., J. High Energy Phys., 02, Article 057 pp. (2020)
[70] Bishara, F.; Montull, M., (Machine) learning amplitudes for faster event generation (12.2019)
[71] Winterhalder, R.; Magerya, V.; Villa, E.; Jones, S. P.; Kerner, M.; Butter, A.; Heinrich, G.; Plehn, T., SciPost Phys., 12, 4, 129 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.