×

Dirichlet and Neumann eigenvalue problems on CR manifolds. (English) Zbl 1405.32057

The main results in this paper are solutions to the Dirichlet and Neumann problems for the sub-Laplacian on domains in CR manifolds.
Let \(M\) be a strictly pseudoconvex CR manifold, \(\theta\) be a positively oriented contact form on \(M\) and \(d_{\theta}\) be a Carnot-Carathéodory metric on \((M,\theta)\). The authors prove that the weak Dirichlet problem for the sub-Laplacian can be solved on domains supporting the Poincaré inequality, and the weak Neumann problem can be solved on \(C^{1,1}\) connected \((\epsilon, \delta)\) domains in the Heisenberg group. As an application the authors show the discretness of the Dirichlet and Neumann spectra for the sub-Laplacian on bounded domains of Carnot-Carathéodory complete pseudohermitian manifolds.

MSC:

32V20 Analysis on CR manifolds
35H20 Subelliptic equations
Full Text: DOI

References:

[1] Adams, R.A.: Sobolev Spaces. Academic, New York (1975) · Zbl 0314.46030
[2] Aribi, A.: Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes. Thèse, Université François Rabelais de Tours, 29 Novembre 2012
[3] Aubin, T.: Nonlinear analysis on manifolds. Monge-Ampère equations. Grundlehren der mathematischen Wissenschaften, vol. 252. Springer, New York (1982) · Zbl 0512.53044 · doi:10.1007/978-1-4612-5734-9
[4] Barletta, E.; Dragomir, S., On the spectrum of a strictly pseudoconvex CR manifold, Abh. Math. Sem. Univ. Hambg., 67, 143-153, (1997) · Zbl 0897.32010 · doi:10.1007/BF02940818
[5] Barletta, E., Dragomir, S.: Sublaplacians on CR manifolds. Bull. Math. Soc. Sci. Math. Roumanie, Tome 52(100) No. 1, 3-32 (2009) · Zbl 1199.32043
[6] Barletta, E., The Lichnerowicz theorem on CR manifolds, Tsukuba J. Math., 31, 77-97, (2007) · Zbl 1138.32020 · doi:10.21099/tkbjm/1496165116
[7] Barletta, E.; Dragomir, S.; Urakawa, H., Yang-Mills fields on CR manifolds, J. Math. Phys., 47, 083504 1-41, (2006) · Zbl 1112.53014 · doi:10.1063/1.2222082
[8] Boggess, A.: CR manifolds and the tangential Cauchy-Riemann complex. Studies in Advanced Mathematics. CRC Press Inc, Boca Raton (1991) · Zbl 0760.32001
[9] Bony, JM, Principe du maximum, inégalité de Harnak et unicité du problème de Cauchy pour les opérateurs elliptiques dégénéré, Ann. Inst. Fourier Grenoble, 19, 277-304, (1969) · Zbl 0176.09703 · doi:10.5802/aif.319
[10] Chang, S-C; Chiu, H-L, Nonnegativity of CR Paneitz operator and its application to the CR Obata’s theorem, J. Geom. Anal., 19, 261-287, (2009) · Zbl 1205.32026 · doi:10.1007/s12220-008-9060-9
[11] Chow, WL, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117, 98-105, (1939) · Zbl 0022.02304
[12] Danielli, D.; Garofalo, N.; Nhieu, D-M, Trace inequalities for Carnot-Carathéodory spaces and applications, Ann. Scuola Norm. Super. Pisa, 27, 195-202, (1998) · Zbl 0938.46036
[13] Danielli, D., Garofalo, N., Nhieu, D.-M.: Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, Memoirs of American Mathematical Society, vol. 182, No. 857 (2006) · Zbl 1100.43005
[14] Dincă, C.: Metode variaţionale şi applicaţii. Editura Tehnică, Bucureşti (1980)
[15] Dragomir, S., Tomassini, G.: Differential geometry and analysis on CR manifolds. Progress in mathematics, vol. 246. Birkhäuser, Boston (2006) · Zbl 1099.32008
[16] Dragomir, S., Minimality in CR geometry and the CR Yamabe problem on CR manifolds with boundary, J. Math. Soc. Jpn., 60, 363-396, (2008) · Zbl 1148.53042 · doi:10.2969/jmsj/06020363
[17] Franchi, B.; Lanconelli, E., Hölder regularity theorem for a class of non uniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Super. Pisa, 10, 523-541, (1983) · Zbl 0552.35032
[18] Franchi, B.; Lu, G.; Wheeden, R., Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble), 45, 577-604, (1995) · Zbl 0820.46026 · doi:10.5802/aif.1466
[19] Franchi, B.; Lu, G.; Wheeden, R., A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Int. Math. Res. Not., 1996, 1-14, (1996) · Zbl 0856.43006 · doi:10.1155/S1073792896000013
[20] Garofalo, N.; Nhieu, DM, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math., 49, 1081-1144, (1996) · Zbl 0880.35032 · doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
[21] Garofalo, N.; Nhieu, DM, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74, 67-97, (1998) · Zbl 0906.46026 · doi:10.1007/BF02819446
[22] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001) · Zbl 1042.35002
[23] Greenleaf, A., The first eigenvalue of a sublaplacian on a pseudohermitian manifold, Commun. Partial Differ. Equ., 10, 191-217, (1985) · Zbl 0563.58034 · doi:10.1080/03605308508820376
[24] Hajlasz, P., Strzelecki, P.: Subelliptic \(p\)-harmonic maps into spheres and the ghost of Hardy spaces. In: Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig, Preprint Nr. 36 (1997) · Zbl 0914.35029
[25] Hörmander, L., Hypoelliptic second-order differential equations, Acta Math., 119, 147-171, (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[26] Jerison, D.; Lee, JM, The Yamabe problem on CR manifolds, J. Differ. Geom., 25, 167-197, (1987) · Zbl 0661.32026 · doi:10.4310/jdg/1214440849
[27] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Interscience Publishers, New York (1963) · Zbl 0119.37502
[28] Mitchell, J., On Carnot-Carathéodory metrics, J. Differ. Geom., 21, 35-45, (1985) · Zbl 0554.53023 · doi:10.4310/jdg/1214439462
[29] Monti, R.; Cassano, F-S, Surface measures in Carnot-Carathéodory spaces, Calc. Var., 13, 339-376, (2001) · Zbl 1032.49045 · doi:10.1007/s005260000076
[30] Monti, R.; Morbidelli, D., Trace theorems for vector fields, Math. Z., 239, 747-776, (2002) · Zbl 1030.46041 · doi:10.1007/s002090100342
[31] Nagel, A.; Stein, EM; Wainger, S., Balls and metrics defined by vector fields I: basic properties, Acta Math., 155, 103-147, (1985) · Zbl 0578.32044 · doi:10.1007/BF02392539
[32] Nomizu, K.; Ozeki, H., The existence of complete Riemannian metrics, Proc. Am. Math. Soc., 12, 889-891, (1961) · Zbl 0102.16401 · doi:10.1090/S0002-9939-1961-0133785-8
[33] Rashevsky, PK, Any two points of a totally nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. I’m Liebknechta Ser. Phys. Mah., 2, 83-94, (1938)
[34] Tanaka, N.: A Differential Geometric Study on Strongly Pseudo-Convex Manifolds. Kinokuniya Book Store Co., Ltd, Kyoto (1975) · Zbl 0331.53025
[35] Rothschild, LP; Stein, EM, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 248-320, (1977) · Zbl 0346.35030
[36] Strichartz, RS, Sub-Riemannian geometry, J. Differ. Geom., 24, 221-263, (1986) · Zbl 0609.53021 · doi:10.4310/jdg/1214440436
[37] Webster, SM, Pseudohermitian structures on a real hypersurface, J. Differ. Geom., 13, 25-41, (1978) · Zbl 0379.53016 · doi:10.4310/jdg/1214434345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.