×

Primitive to non-primitive BCH codes: an instantaneous path shifting scheme for data transmission. (English) Zbl 1439.94099

Summary: In this paper, we present constructions of primitive and non-primitive BCH codes using monoid rings over the local ring \(\mathbb Z_{2^m}\), with \(m \geq 1\). We show that there exist two sequences \(\{C_{b^j n} \}_{j \geq 1}\) and \(\{C_{b^j n}^\prime \}_{j \geq 1}\) of non-primitive BCH codes (over \(\mathbb Z_2\) and \(\mathbb Z_{2^m}\), respectively) against primitive BCH codes \(C_n\) of length \(n\) and \(C_n^\prime\) (over \(\mathbb Z_2\) and \(\mathbb Z_{2^m}\)), respectively. A technique is developed in an innovative way that enables the data path to shift instantaneously during transmission via the coding schemes of \(C_n\), \(C_n^\prime\), \(\{C_{b^j n} \}_{j \geq 1}\) and \(\{C_{b^j n}^\prime \}_{j \geq 1}\). The selection of the schemes is subject to the choice of better code rate or better error-correction capability of the code. Finally, we present a decoding procedure for BCH codes over Galois rings, which is also used for the decoding of BCH codes over Galois fields, based on the modified Berlekamp-Massey algorithm.

MSC:

94B05 Linear codes (general theory)
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
16S70 Extensions of associative rings by ideals
Full Text: DOI

References:

[1] Andrade, A. A. and Palazzo, R. Jr., Linear codes over finite rings, TEMA-Tend. Mat. Appl. Comput.6(2) (2005) 207-217. · Zbl 1208.94065
[2] Andrade, A. A. and Palazzo, R. Jr., Construction and decoding of BCH codes over finite rings, Linear Algebra Appl.286 (1999) 69-85. · Zbl 1049.94023
[3] Andrade, A. A., Shah, T. and Khan, A., A note on linear codes over semigroup rings, TEMA Tend. Mat. Appl. Comput.12(2) (2011) 79-89. · Zbl 1263.94037
[4] Ansari, A. S. and Shah, T., An association between primitive and non-primitive BCH codes using monoid rings, EURASIP J. Wirel. Commun. Netw. (2016). https://doi.org/10.1186/s13638-016-0526-3
[5] Blake, I. F., Codes over certain rings, Inform. Contr.20 (1972) 396-404. · Zbl 0238.94006
[6] Blake, I. F., Codes over integer residue rings, Inform. Contr.29 (1975) 295-300. · Zbl 0319.94003
[7] Cazaran, J., Kelarev, A. V., Quinn, S. J. and Vertigan, D., An algorithm for computing the minimum distances of extensions of BCH codes embedded in semigroup rings, Semigroup Forum73 (2006) 317-329. · Zbl 1145.94023
[8] Forney, G. D. Jr., On decoding BCH codes, IEEE Trans. Inform. TheoryIT-11(4) (1965) 549-557. · Zbl 0143.41401
[9] Interlando, J. C., Palazzo, R. Jr. and Elia, M., On the decoding of Reed-Solomon and BCH codes over integer residue rings, IEEE Trans. Inform. TheoryIT-43 (1997) 1013-1021. · Zbl 0926.94035
[10] Kelarev, A. V., Ring Constructions and Applications (World Scientific, River Edge, New York2002). · Zbl 0999.16036
[11] Kelarev, A. V., An algorithm for BCH codes extended with finite state automata, Fund. Inf.84(1) (2008) 51-60. · Zbl 1155.94027
[12] Kelarev, A. V., Algorithms for computing parameters of graph-based extensions of BCH codes, J. Discr. Algor.5(6) (2007) 553-563. · Zbl 1134.94391
[13] McDonald, B. R., Finite Rings with Identity (Marcel Dekker, New York, 1974). · Zbl 0294.16012
[14] Nagpaul, S. R. and Jain, S. K., Topics in Applied Abstract Algebra (Thomson Brooks/Cole, U.S.A., 2005). · Zbl 1280.94002
[15] Shah, T., Khan, M. and Andrade, A. A., A decoding method of an \(n\) length binary BCH code through \((n + 1) n\) length binary cyclic code, An. Acad. Brasil. Ciên.85(3) (2013) 863-872. · Zbl 1334.94103
[16] Shah, T., Amanullah, A. and Andrade, A. A., A method for improving the code rate and error correction capability of a cyclic code, Comp. Appl. Math.32(2) (2013) 261-274. · Zbl 1284.94157
[17] Shah, T. and Andrade, A. A., Cyclic codes through \(B [X; \frac{a}{b} \Bbb Z_{\geq 0}](\frac{a}{b} \in Q^+, b = a + 1)\) and encoding, Discr. Math. Algor. Appl.4(4) (2012). https://doi.org/10.1142/S1793830912500590
[18] Shah, T. and Andrade, A. A., Cyclic codes through \(B [X], B [X; \frac{1}{k p} \Bbb Z_{\geq 0}]\) and \(B [X; \frac{1}{p^k} \Bbb Z_{\geq 0}]\): A comparison, J. Algebra Appl.11(4) (2012) 1250078, 19 pp. https://doi.org/10.1142/S0219498812500788 · Zbl 1255.94085
[19] Shah, T., Amanullah and Andrade, A. A., A decoding procedure which improves code rate and error corrections, J. Adv. Res. Appl. Math.4(4) (2012) 37-50.
[20] Shah, T., Khan, A. and Andrade, A. A., Encoding through generalized polynomial codes, Comp. Appl. Math.30(2) (2011) 349-366. · Zbl 1230.94010
[21] Shankar, P., On BCH codes over arbitrary integer rings, IEEE Trans. Inform. TheoryIT-25(4) (1979) 480-483. · Zbl 0418.94014
[22] Spiegel, E., Codes over \(\Bbb Z_m\), Inform. Control35 (1977) 48-51. · Zbl 0365.94020
[23] Spiegel, E., Codes over \(\Bbb Z_m\), Revisited, Inform. Control37 (1978) 100-104. · Zbl 0382.94023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.