×

Divergence-free magnetohydrodynamics on conformally moving, adaptive meshes using a vector potential method. (English) Zbl 07785503

Summary: We present a new method for evolving the equations of magnetohydrodynamics (both Newtonian and relativistic) that is capable of maintaining a divergence-free magnetic field (\(\nabla\cdot\mathbf{B} = 0\)) on adaptively refined, conformally moving meshes. The method relies on evolving the magnetic vector potential and then using it to reconstruct the magnetic fields. The advantage of this approach is that the vector potential is not subject to a constraint equation in the same way the magnetic field is, and so can be refined and moved in a straightforward way. We test this new method against a wide array of problems from simple Alfvén waves on a uniform grid to general relativistic MHD simulations of black hole accretion on a nested, spherical-polar grid. We find that the code produces accurate results and in all cases maintains a divergence-free magnetic field to machine precision.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Wxx Magnetohydrodynamics and electrohydrodynamics

Software:

MOCCT; HARM; Cosmos++; RIEMANN

References:

[1] Rossmanith, J. A., High-order discontinuous Galerkin finite element methods with globally divergence-free constrained transport for ideal MHD, ArXiv e-prints
[2] Brackbill, J. U.; Barnes, D. C., The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys., 426-430 (1980) · Zbl 0429.76079
[3] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys., 270-292 (1999) · Zbl 0936.76051
[4] Evans, C. R.; Hawley, J. F., Simulation of magnetohydrodynamic flows – a constrained transport method. Astrophys. J., 659-677 (1988)
[5] Dai, W.; Woodward, P. R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamical flows. Astrophys. J., 317-335 (1998)
[6] Ryu, D.; Miniati, F.; Jones, T. W.; Frank, A., A divergence-free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J., 244-255 (1998)
[7] Tóth, G., The \(\operatorname{\nabla} \cdot B = 0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys., 605-652 (2000) · Zbl 0980.76051
[8] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 284-309 (1999) · Zbl 0952.76045
[9] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys., 645-673 (2002) · Zbl 1059.76040
[10] Mocz, P.; Vogelsberger, M.; Sijacki, D.; Pakmor, R.; Hernquist, L., A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations. Mon. Not. R. Astron. Soc., 397-414 (2014)
[11] Balsara, D. S.; Dumbser, M., Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J. Comput. Phys., 687-715 (2015) · Zbl 1351.76092
[12] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys., 1970-1993 (2010) · Zbl 1303.76140
[13] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys., 7476-7503 (2012) · Zbl 1284.76261
[14] Brandenburg, A.; Dobler, W., Hydromagnetic turbulence in computer simulations. Comput. Phys. Commun., 471-475 (2002) · Zbl 1016.85002
[15] Etienne, Z. B.; Liu, Y. T.; Shapiro, S. L., Relativistic magnetohydrodynamics in dynamical spacetimes: a new adaptive mesh refinement implementation. Phys. Rev., 8 (2010)
[16] Choptuik, M. W., A Study of Numerical Techniques for Radiative Problems in General Relativity (1986), The University of British Columbia: The University of British Columbia Canada, Ph.D. thesis
[17] Anninos, P.; Fragile, P. C.; Salmonson, J. D., Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement. Astrophys. J., 723-740 (2005)
[18] Anninos, P.; Fragile, P. C.; Wilson, J.; Murray, S. D., Three-dimensional moving-mesh simulations of galactic center cloud G2. Astrophys. J., 132 (2012)
[19] Anninos, P.; Bryant, C.; Fragile, P. C.; Holgado, A. M.; Lau, C.; Nemergut, D., CosmosDG: an hp-adaptive discontinuous Galerkin code for hyper-resolved relativistic MHD. Astrophys. J. Suppl. Ser., 17 (2017)
[20] Anninos, P.; Fragile, P. C.; Olivier, S. S.; Hoffman, R.; Mishra, B.; Camarda, K., Relativistic tidal disruption and nuclear ignition of white dwarf stars by intermediate-mass black holes. Astrophys. J., 3 (2018)
[21] Anninos, P.; Fragile, P. C.; Murray, S. D., Cosmos: a radiation-chemo-hydrodynamics code for astrophysical problems. Astrophys. J. Suppl. Ser., 177-186 (2003)
[22] Font, J. A., Numerical hydrodynamics in general relativity. Living Rev. Relativ., 4 (2003) · Zbl 1068.83501
[23] Spiteri, R. J.; Ruuth, S. J., A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal., 469-491 (2002) · Zbl 1020.65064
[24] Noble, S. C.; Gammie, C. F.; McKinney, J. C.; Del Zanna, L., Primitive variable solvers for conservative general relativistic magnetohydrodynamics. Astrophys. J., 626-637 (2006)
[25] Budd, C. J.; Williams, J. F., Moving mesh generation using the parabolic Monge-Ampère equation. SIAM J. Sci. Comput., 3438-3465 (2009) · Zbl 1200.65099
[26] Cao, W.; Huang, W.; Russell, R. D., A moving mesh method based on the geometric conservation law. SIAM J. Sci. Comput., 118-142 (2002) · Zbl 1016.65066
[27] Huang, W., Practical aspects of formulation and solution of moving mesh partial differential equations. J. Comput. Phys., 753-775 (2001) · Zbl 0990.65107
[28] Chacón, L.; Delzanno, G. L.; Finn, J. M., Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution. J. Comput. Phys., 87-103 (2011) · Zbl 1205.65260
[29] Sulman, M.; Williams, J. F.; Russell, R. D., Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys., 3302-3330 (2011) · Zbl 1218.65065
[30] Fragile, P. C.; Anninos, P.; Gustafson, K.; Murray, S. D., Magnetohydrodynamic simulations of shock interactions with radiative clouds. Astrophys. J., 327-339 (2005)
[31] Fragile, P. C.; Blaes, O. M.; Anninos, P.; Salmonson, J. D., Global general relativistic magnetohydrodynamic simulation of a tilted black hole accretion disk. Astrophys. J., 417-429 (2007)
[32] Fragile, P. C.; Gillespie, A.; Monahan, T.; Rodriguez, M.; Anninos, P., Numerical simulations of optically thick accretion onto a black hole. I. Spherical case. Astrophys. J. Suppl. Ser., 9 (2012)
[33] Del Zanna, L.; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics. Astron. Astrophys., 397-413 (2003) · Zbl 1222.76122
[34] Etienne, Z. B.; Paschalidis, V.; Liu, Y. T.; Shapiro, S. L., Relativistic magnetohydrodynamics in dynamical spacetimes: improved electromagnetic gauge condition for adaptive mesh refinement grids. Phys. Rev., 2 (2012)
[35] Gardiner, T. A.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport in three dimensions. J. Comput. Phys., 4123-4141 (2008) · Zbl 1317.76057
[36] Goldstein, M. L., An instability of finite amplitude circularly polarized Alfven waves. Astrophys. J., 700-704 (1978)
[37] Del Zanna, L.; Velli, M.; Londrillo, P., Parametric decay of circularly polarized Alfvén waves: multidimensional simulations in periodic and open domains. Astron. Astrophys., 705-718 (2001)
[38] Balsara, D. S., Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser., 149-184 (2004)
[39] Hawley, J. F.; Stone, J. M., MOCCT: a numerical technique for astrophysical MHD. Comput. Phys. Commun., 127-148 (1995) · Zbl 0923.76152
[40] Beckwith, K.; Stone, J. M., A second-order Godunov method for multi-dimensional relativistic magnetohydrodynamics. Astrophys. J. Suppl. Ser., 6 (2011)
[41] Gardiner, T. A.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys., 509-539 (2005) · Zbl 1087.76536
[42] Orszag, S. A.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech., 129-143 (1979)
[43] Londrillo, P.; Del Zanna, L., High-order upwind schemes for multidimensional magnetohydrodynamics. Astrophys. J., 508-524 (2000)
[44] Gammie, C. F.; McKinney, J. C.; Tóth, G., HARM: a numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J., 444-457 (2003)
[45] Shiokawa, H.; Dolence, J. C.; Gammie, C. F.; Noble, S. C., Global general relativistic magnetohydrodynamic simulations of black hole accretion flows: a convergence study. Astrophys. J., 187 (2012)
[46] White, C. J.; Stone, J. M.; Gammie, C. F., An extension of the Athena++ code framework for GRMHD based on advanced Riemann solvers and staggered-mesh constrained transport. Astrophys. J. Suppl. Ser., 22 (2016)
[47] O. Porth, C. Gammie, Y. Mizuno, L. Rezzolla, H. Olivares, S. Markoff, B. Ryan, J. McKinney, R. Narayan, S. Noble, C.J. White, J. Stone, F. Foucart, P.C. Fragile, Z. Etienne, M. Liska, G.S. Ryan, L. Del Zanna, K. Chatterjee, M. Bugli, C.K. Chan, Z. Younsi, The event horizon GRMHD code comparison project, Astrophys. J.
[48] Fishbone, L. G.; Moncrief, V., Relativistic fluid disks in orbit around Kerr black holes. Astrophys. J., 962-976 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.