×

The optimal design of a functionally graded corrugated cylindrical shell under axisymmetric loading. (English) Zbl 1476.74101

Summary: Optimization of parameters of the corrugated shell aims to achieve its minimum weight while keeping maximum stiffness ability. How an introduction of functionally graded corrugations resulted in improved efficiency of this thin-walled structure is demonstrated. The corrugations are graded varying their pitch. The effect of variation in pitch is studied. Homogenization approach gives explicit expressions to calculate the equivalent shell properties. Then well-elaborate methods of optimal design theory are used. The illustrative examples for hydrostatic load demonstrate a high efficiency of the used method.

MSC:

74K25 Shells
65K10 Numerical optimization and variational techniques
74Q05 Homogenization in equilibrium problems of solid mechanics
Full Text: DOI

References:

[1] I. Dayyani, A. D. Shaw, E. I. Saavedra Flores and M. I. Friswell, The mechanics of composite corrugated structures: A review with applications in morphing aircraft, Comp. Struct. 133 (2015), 358-380.; Dayyani, I.; Shaw, A. D.; Saavedra Flores, E. I.; Friswell, M. I., The mechanics of composite corrugated structures: A review with applications in morphing aircraft, Comp. Struct., 133, 358-380 (2015)
[2] S. Rawat, A. Narayanan, T. Nagendiran and A. K. Upadhyay, Collapse behavior and energy absorption in elliptical tubes with functionally graded corrugations, Proc. Eng. 173 (2017), 1374-1381.; Rawat, S.; Narayanan, A.; Nagendiran, T.; Upadhyay, A. K., Collapse behavior and energy absorption in elliptical tubes with functionally graded corrugations, Proc. Eng., 173, 1374-1381 (2017)
[3] F. Guinea, M. I. Katsnelson and M. A. H. Vozmediano, Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B 77 (7) (2008), 075422.; Guinea, F.; Katsnelson, M. I.; Vozmediano, M. A. H., Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B, 77, 7, 075422 (2008)
[4] I. V. Andrianov, J. Awrejcewicz and A. A. Diskovsky, Sensitivity analysis in design of constructions made of functionally graded materials, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sc. 227 (1) (2013), 19-28.; Andrianov, I. V.; Awrejcewicz, J.; Diskovsky, A. A., Sensitivity analysis in design of constructions made of functionally graded materials, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sc., 227, 1, 19-28 (2013) · Zbl 1476.74101
[5] I. V. Andrianov, J. Awrejcewicz and A. A. Diskovsky, Optimal design of a functionally graded corrugated rods subjected to longitudinal deformation, Arch. Appl. Mech. 85 (2015), 303-314.; Andrianov, I. V.; Awrejcewicz, J.; Diskovsky, A. A., Optimal design of a functionally graded corrugated rods subjected to longitudinal deformation, Arch. Appl. Mech., 85, 303-314 (2015) · Zbl 1476.74101
[6] I. V. Andrianov, A. A. Diskovsky and E. Syerko, Optimal design of a circular diaphragm using the homogenization approach, Math. Mech. Sol. 22 (3) (2017), 283-303.; Andrianov, I. V.; Diskovsky, A. A.; Syerko, E., Optimal design of a circular diaphragm using the homogenization approach, Math. Mech. Sol., 22, 3, 283-303 (2017) · Zbl 1373.74080
[7] I. V. Andrianov, J. Awrejcewicz and A. A. Diskovsky, Optimal design of a functionally graded corrugated cylindrical shell subjected to axisymmetric loading, Arch. Appl. Mech. 88 (2018), 1027-1039.; Andrianov, I. V.; Awrejcewicz, J.; Diskovsky, A. A., Optimal design of a functionally graded corrugated cylindrical shell subjected to axisymmetric loading, Arch. Appl. Mech., 88, 1027-1039 (2018) · Zbl 1476.74101
[8] A. G. Kolpakov, Design of corrugated plates with extreme stiffnesses, J. Appl. Mech. Tech. Phys. 58 (3) (2017), 495-502.; Kolpakov, A. G., Design of corrugated plates with extreme stiffnesses, J. Appl. Mech. Tech. Phys., 58, 3, 495-502 (2017) · Zbl 1454.74109
[9] Y. S. Tian and T. J. Lu, Optimal design of compression corrugated panels, Thin-Wall. Struct. 43 (1) (2005), 477-498.; Tian, Y. S.; Lu, T. J., Optimal design of compression corrugated panels, Thin-Wall. Struct., 43, 1, 477-498 (2005)
[10] T. Flatscher, T. Daxner, D. H. Pahr and F. G. Rammerstorfer, Optimization of corrugated paperboard under local and global buckling constraints, Lect. Notes Appl. Comput. Mech. 55 (2011), 329-346.; Flatscher, T.; Daxner, T.; Pahr, D. H.; Rammerstorfer, F. G., Optimization of corrugated paperboard under local and global buckling constraints, Lect. Notes Appl. Comput. Mech., 55, 329-346 (2011) · Zbl 1323.74064
[11] N. V. Banichuk and B. L. Karihaloo, On the solution of optimization problems with non-smooth extremals, Int. J. Sol. Struct. 13 (8) (1977), 725-733.; Banichuk, N. V.; Karihaloo, B. L., On the solution of optimization problems with non-smooth extremals, Int. J. Sol. Struct., 13, 8, 725-733 (1977) · Zbl 0391.49013
[12] A. F. Arkhangelskii and V. I. Gorbachev, Effective characteristics of corrugated plates, Mech. Sol. 42 (2007), 447-462.; Arkhangelskii, A. F.; Gorbachev, V. I., Effective characteristics of corrugated plates, Mech. Sol., 42, 447-462 (2007)
[13] A. G. Kolpakov and S. I. Rakin, Calculation of the effective stiffness of the corrugated plate by solving the problem on the plate cross-section, J. Appl. Mech. Tech. Phys. 57 (4) (2016), 757-767.; Kolpakov, A. G.; Rakin, S. I., Calculation of the effective stiffness of the corrugated plate by solving the problem on the plate cross-section, J. Appl. Mech. Tech. Phys., 57, 4, 757-767 (2016) · Zbl 1433.74059
[14] E. Syerko, A. A. Diskovsky, I. V. Andrianov, S. Comas-Cardona and C. Binetruy, Corrugated beams mechanical behavior modeling by the homogenization method, Int. J. Sol. Struct. 50 (2013), 928-936.; Syerko, E.; Diskovsky, A. A.; Andrianov, I. V.; Comas-Cardona, S.; Binetruy, C., Corrugated beams mechanical behavior modeling by the homogenization method, Int. J. Sol. Struct., 50, 928-936 (2013)
[15] Y. Zheng, V. L. Berdichevsky and W. Yu, An equivalent classical plate model of corrugated structures, Int. J. Sol. Struct. 51 (11) (2014), 2073-2083.; Zheng, Y.; Berdichevsky, V. L.; Yu, W., An equivalent classical plate model of corrugated structures, Int. J. Sol. Struct., 51, 11, 2073-2083 (2014)
[16] D. Briassoulis, Equivalent orthotropic properties of corrugated sheets, Comput. Struct. 23 (1986), 129-138.; Briassoulis, D., Equivalent orthotropic properties of corrugated sheets, Comput. Struct., 23, 129-138 (1986)
[17] Y. Xia, M. I. Friswell and E. I. Saavedra Flores, Equivalent models of corrugated panels, Int. J. Sol. Struct. 49 (13) (2012), 1453-1462.; Xia, Y.; Friswell, M. I.; Saavedra Flores, E. I., Equivalent models of corrugated panels, Int. J. Sol. Struct., 49, 13, 1453-1462 (2012)
[18] I. V. Andrianov, A. A. Diskovsky and E.G. Kholod, Homogenization method in the theory of corrugated plates, Tech. Mech. 18 (1998), 123-133.; Andrianov, I. V.; Diskovsky, A. A.; Kholod, E. G., Homogenization method in the theory of corrugated plates, Tech. Mech., 18, 123-133 (1998)
[19] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959.; Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959) · Zbl 0114.40801
[20] M. V. Pryjmak, Periodic functions with variable period, arXiv:1006.2792v1 [math.GM].; Pryjmak, M. V., Periodic functions with variable period, arXiv:1006.2792v1 [math.GM]
[21] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978.; Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978) · Zbl 0411.60078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.