×

A quantum dissipative system in an anisotropic non-linear absorbing environment. (English) Zbl 1198.81133

Summary: A canonical quantization scheme is represented for a quantum system interacting with a nonlinear absorbing environment. The environment is taken anisotropic and the main system is coupled to its environment through some coupling tensors of various ranks. The nonlinear response equation of the environment against the motion of the main system is obtained. The nonlinear Langevin-Schrödinger equation is obtained as the macroscopic equation of motion of the dissipative system. The effect of nonlinearity of the environment is investigated on the spontaneous emission of an initially excited two-level atom imbedded in such an environment.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
81S05 Commutation relations and statistics as related to quantum mechanics (general)
82B35 Irreversible thermodynamics, including Onsager-Machlup theory
81V80 Quantum optics
35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] Razavy, M., Classical and Quantum Dissipative Systems (2005), Imperial College press · Zbl 1105.82014
[2] Messer, J., Acta Phys. Austriaca, 50, 75 (1979)
[3] Dekker, H., Phys. Rep., 80, 1 (1981)
[4] Caldirola, P., Nuovo Cimento, 18, 393 (1941)
[5] Kanai, E., Prog. Theor. Phys., 3, 440 (1948)
[6] Havas, P., Nuovo Cim. Suppl., 5, 363 (1957) · Zbl 0077.37202
[7] Denman, H. H., Am. J. Phys., 34, 1147 (1966)
[8] Brittin, W. E., Phys. Rev., 77, 396 (1950) · Zbl 0036.14304
[9] Havas, P., Bull. Am. Phys. Soc., 1, 337 (1956)
[11] Razavy, M., Can. J. Phys., 50, 2037 (1972)
[12] Haken, H., Rev. Mod. Phys., 47, 67 (1975)
[13] Nicolis, G.; Prigogine, I., Self-Organization in Non-Equilibrium System (1977), Wiley: Wiley New York · Zbl 0363.93005
[14] Ford, G. W.; Lewis, J. T.; O’Connell, R. F., Phys. Rev. A, 37, 4419 (1988)
[15] Ford, G. W.; Lewis, J. T.; O’Connell, R. F., Phys. Rev. Lett., 55, 2273 (1985)
[16] Caldeira, A. O.; Leggett, A. J., Phys. Rev. Lett., 46, 211 (1981)
[17] Caldeira, A. O.; Leggett, A. J., Ann. Phys. (N.Y.), 149, 374 (1983)
[18] Castro Neto, A. H.; Caldeira, A. O., Phys. Rev. Lett., 67, 1960 (1991) · Zbl 0990.82532
[19] Hu, B. L.; Paz, J. P.; Zhang, Y., Phys. Rev. D, 45, 2843 (1992) · Zbl 1232.82011
[20] Liao, Jie-Lou; Pollak, E., Chem. Phys., 268, 295 (2001)
[22] Caldeira, A. O.; Leggett, A. J., Ann. Phys. (N.Y.), 153, 445 (1984)
[23] Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P.A.; Grag, A.; Zwerger, W., Rev. Mod. Phys., 59, 1 (1987)
[24] Shuster, H. G.; Veria, V. R., Phys. Rev. B, 34, 189 (1986)
[25] Ford, G. W.; Kac, M.; Mazur, P., J. Math. Phys., 6, 504 (1964)
[26] Kheirandish, F.; Amooshahi, M., Mod. Phys. Lett. A, 20, No. 39, 3025 (2005) · Zbl 1086.81508
[27] Amooshahi, M., J. Math. Phys., 50, 062301 (2009) · Zbl 1216.81150
[28] Kheirandish, F.; Amooshahi, M., Phys. Rev. A, 74, 042102 (2006)
[29] Amooshahi, M.; Kheirandish, F., J. Phys. A: Math. Theor., 41, 275402 (2008) · Zbl 1149.81376
[30] He, Guang S.; Liu, Song H., Physics of Nonlinear Optics, World Scientific (1999)
[31] Scully, M. O.; Zubairy, M. S., Quantum Optics (1997), University Press: University Press Cambridge
[32] Milonni, P. W., The Quantum Vacuum (1994), Academic Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.