×

Differentiable mappings on products with different degrees of differentiability in the two factors. (English) Zbl 1330.46039

A systematic treatment is proposed for the calculus involving product-type mappings with different degrees of differentiability in the two factors.
The following are the main results of this paper.
{ Theorem A.} Let \(E_1\), \(E_2\) and \(F\) be locally convex spaces, \(U\subseteq E_1\) and \(V\subseteq E_2\) be convex subsets with dense interior, and \(r,s\in \mathbb N_0\cup \{\infty\}\). Then,
(I)
\(\gamma^\vee:U\to C^s(V,F)\),\(x\mapsto \gamma(x,.)\) is \(C^r\) for each \(\gamma\in C^{r,s}(U\times V,F)\), and the map \(\Phi: C^{r,s}(U\times V,F)\to C^r(U,C^s(V,F))\),\(\gamma \mapsto \gamma^\vee\) is linear and a topological embedding;
(II)
if \(U\times V\subseteq E_1\times E_2\) is a \(k\)-space or \(V\) is locally compact, then \(\Phi\) is an isomorphism of topological vector spaces.
{ Theorem B.} Let \(M_1\) and \(M_2\) be smooth manifolds (possibly with rough boundary), modeled on locally convex spaces \(E_1\) and \(E_2\), respectively. Let \(F\) be a locally convex space and \(r,s\in \mathbb N_0\cup \{\infty\}\). Then,
(I)
\(\gamma^\vee\in C^r(M_1,C^s(M_2,F))\), for all \(\gamma\in C^{r,s}(M_1\times M_2,F)\);
(II)
the map \(\Phi: C^{r,s}(M_1\times M_2,F)\to C^r(M_1,C^s(M_2,F))\),\(\gamma\mapsto \gamma^\vee\) is linear and a topological embedding;
(III)
if \(E_1\) and \(E_2\) are metrizable, then \(\Phi\) is an isomorphism of topological vector spaces.
Finally, as an application of this \(C^{r,s}\)-type theory, the parameter dependence of solutions of differential equations in locally convex spaces is discussed.

MSC:

46E50 Spaces of differentiable or holomorphic functions on infinite-dimensional spaces
26E15 Calculus of functions on infinite-dimensional spaces
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
26E25 Set-valued functions
46T05 Infinite-dimensional manifolds

References:

[1] Alzaareer, H., Lie group structures on groups of maps on non-compact spaces and manifolds (2013), Universität Paderborn, (Advisor: H. Glöckner). http://nbn-resolving.de/urn:nbn:de:hbz:466:2-11572
[2] Amann, H., (Ordinary Differential Equations. Ordinary Differential Equations, Studies in Mathematics, vol. 13 (1990), de Gruyter: de Gruyter Berlin) · Zbl 0708.34002
[3] Außenhofer, L., Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups, Dissertationes Math., 384, 113 (1999) · Zbl 0953.22001
[4] Bertram, W.; Glöckner, H.; Neeb, K.-H., Differential calculus over general base fields and rings, Expo. Math., 22, 3, 213-282 (2004) · Zbl 1099.58006
[6] Biller, H., Analyticity and naturality of the multi-variable functional calculus, Expo. Math., 25, 131-163 (2007) · Zbl 1134.46029
[7] Bochnak, J.; Siciak, J., Polynomials and multilinear mappings in topological vector spaces, Studia Math., 39, 59-76 (1971) · Zbl 0214.37702
[8] Dahmen, R., Direct limit constructions in infinite dimensional Lie theory (2011), University of Paderborn, (Ph.D. thesis)
[9] Engelking, R., (General Topology. General Topology, Sigma Series in Pure Mathematics, vol. 6 (1989), Heldermann: Heldermann Berlin) · Zbl 0684.54001
[10] Franklin, S. P.; Thomas, B. V.S., A survey of \(k_\omega \)-spaces, Topol. Proc., 2, 111-124 (1977) · Zbl 0416.54027
[11] Frölicher, A.; Kriegl, A., Linear Spaces and Differentiation Theory (1988), John Wiley: John Wiley Chichester · Zbl 0657.46034
[12] Glöckner, H., Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal., 194, 347-409 (2002) · Zbl 1022.22021
[13] Glöckner, H., Infinite-dimensional Lie groups without completeness restrictions, (Strasburger, A.; Hilgert, J.; Neeb, K.-H.; Wojtyński, W., Geometry and Analysis on Lie Groups, Vol. 55 (2002), Banach Center Publication: Banach Center Publication Warsaw), 43-59 · Zbl 1020.58009
[17] Glöckner, H., Direct limits of infinite-dimensional Lie groups, (Neeb, K.-H.; Pianzola, A., Developments and Trends in Infinite-Dimensional Lie Theory. Developments and Trends in Infinite-Dimensional Lie Theory, Progr. Math., vol. 288 (2011), Birkhäuser: Birkhäuser Boston), 243-280 · Zbl 1217.22018
[19] Glöckner, H., Continuity of LF-algebra representations associated to representations of Lie groups, Kyoto J. Math., 53, 3, 567-595 (2013) · Zbl 1279.22015
[20] Glöckner, H., Exponential laws for ultrametric partially differentiable functions and applications, p-Adic Numbers Ultrametric Anal. Appl., 5, 2, 122-1591 (2013) · Zbl 1317.26022
[22] Glöckner, H.; Gramlich, R.; Hartnick, T., Final group topologies, Kac-Moody groups and Pontryagin duality, Isr. J. Math., 177, 49-101 (2010) · Zbl 1204.22014
[24] Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., 7, 65-222 (1982) · Zbl 0499.58003
[25] Keller, H. H., (Differential Calculus in Locally Convex Spaces. Differential Calculus in Locally Convex Spaces, Lecture Notes in Mathematics, vol. 417 (1974), Springer Verlag: Springer Verlag Berlin) · Zbl 0293.58001
[26] Kelley, L., General Topology (1975), Springer: Springer New York · Zbl 0306.54002
[27] Kriegl, A.; Michor, P. W., Regular infinite-dimensional Lie groups, J. Lie Theory, 7, 61-99 (1997) · Zbl 0893.22012
[28] Kriegl, A.; Michor, P. W., (The Convenient Setting of Global Analysis. The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, vol. 53 (1997), Amer. Math. Soc.: Amer. Math. Soc. Providence R.I) · Zbl 0889.58001
[29] Lang, S., (Fundamentals of Differential Geometry. Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191 (2001), Springer: Springer New York) · Zbl 0995.53001
[30] Michor, P. W., Manifolds of Differentiable Mappings (1980), Shiva Publishing: Shiva Publishing Orpington · Zbl 0433.58001
[31] Milnor, J., Remarks on infinite-dimensional Lie groups, (DeWitt, B. S.; Stora, R., Relativité, Groupes et Topologie II (1984), North-Holland: North-Holland Amsterdam), 1007-1057 · Zbl 0594.22009
[32] Nagel, E., Fractional non-Archimedean calculus in many variables, \(p\)-Adic Numbers, Ultrametric Anal. Appl., 5, 1, 22-64 (2013) · Zbl 1273.11167
[33] Neeb, K.-H., Towards a Lie theory of locally convex groups, Japan. J. Math., 1, 291-468 (2006) · Zbl 1161.22012
[34] Neeb, K.-H.; Wagemann, F., Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds, Geom. Dedicata, 134, 17-60 (2008) · Zbl 1143.22016
[35] Omori, H.; Maeda, Y.; Yoshioka, A.; Kobayashi, O., On regular Fréchet-Lie groups, Tokyo J. Math., IV, 5, 365-398 (1982) · Zbl 0515.58004
[36] Salmasian, H.; Neeb, K.-H., Differentiable vectors and unitary representations of Fréchet-Lie supergroups, Math. Z., 275, 419-451 (2013) · Zbl 1277.22020
[37] Schmeding, A., The diffeomorphism group of a non-compact orbifold (2013), Universität Paderborn, (Advisor: H. Glöckner). http://nbn-resolving.de/urn:nbn:de:hbz:466:2-12166
[38] Seip, U., (Kompakt Erzeugte Vektorräume und Analysis. Kompakt Erzeugte Vektorräume und Analysis, Lecture Notes in Math., vol. 273 (1972), Springer: Springer Berlin) · Zbl 0242.46003
[39] Steenrod, N. E., A convenient category of topological spaces, Michigan Math. J., 14, 133-152 (1967) · Zbl 0145.43002
[41] Wockel, C., Smooth extensions and spaces of smooth and holomorphic mappings, J. Geom. Symmetry Phys., 5, 118-126 (2006) · Zbl 1108.58006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.