×

A single variable stress-based multi-material topology optimization method with three-dimensional unstructured meshes. (English) Zbl 1539.74308

Summary: Stress-minimization topology optimization with multi-phase materials is still an academic challenge, especially for three-dimensional (3D) problems. This paper proposes a novel stress-based multi-material topology optimization method to achieve a 3D stress-minimization design involving unstructured meshes. A comprehensive stair form interpolation model is introduced to address both stiff penalization and stress relaxation issues. In this model, only one type of nodal design variable is introduced to represent the multi-material density field, which is projected to the physical parameter field using smooth Heaviside functions with varied threshold settings. To minimize the global measure of stress, the P-norm stress aggregation function is established and a multi-material topology optimization problem with an arbitrary number of volume constraints is formulated. Additionally, the adjoint sensitivity analysis is performed and the provided interpolation model adaptively updates the interpolation parameters. Finally, the presented methodology is validated by several three-dimensional design examples, including a supported beam, bridge, and airplane bearing bracket.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
Full Text: DOI

References:

[1] Duysinx, P.; Bendsøe, M. P., Topology optimization of continuum structures with local stress constraints, Int. J. Numer. Methods Eng., 43, 1453-1478, (1998) · Zbl 0924.73158
[2] Bruggi, M.; Duysinx, P., Topology optimization for minimum weight with compliance and stress constraints, Struct. Multidiscip. Optim., 46, 369-384, (2012) · Zbl 1274.74219
[3] París, J.; Navarrina, F.; Colominas, I.; Casteleiro, M., Topology optimization of continuum structures with local and global stress constraints, Struct. Multidiscip. Optim., 39, 419-437, (2009) · Zbl 1274.74375
[4] da Silva, G. A.; Beck, A. T.; Sigmund, O., Stress-constrained topology optimization considering uniform manufacturing uncertainties, Comput. Methods Appl. Mech. Eng., 344, 512-537, (2019) · Zbl 1440.74290
[5] White, D. A.; Choi, Y.; Kudo, J., A dual mesh method with adaptivity for stress-constrained topology optimization, Struct. Multidiscip. Optim., 61, 749-762, (2020)
[6] Picelli, R.; Townsend, S.; Brampton, C.; Norato, J.; Kim, H. A., Stress-based shape and topology optimization with the level set method, Comput. Methods Appl. Mech. Eng., 329, 1-23, (2018) · Zbl 1439.74294
[7] Nguyen, S. H.; Kim, H. G., Stress -constrained shape and topology optimization with the level set method trimmed hexahedral meshes, Comput. Methods Appl. Mech. Eng., 366, Article 113061 pp., (2020) · Zbl 1442.74175
[8] Xia, Q.; Shi, T.; Liu, S.; Wang, M. Y., A level set solution to the stress-based structural shape and topology optimization, Comput. Struct., 90-91, 55-64, (2012)
[9] Xia, L.; Zhang, L.; Xia, Q.; Shi, T., Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Eng., 333, 356-370, (2018) · Zbl 1440.74322
[10] Garcez, G. L.; Pavanello, R.; Picelli, R., Stress-based structural topology optimization for design-dependent self-weight loads problems using the BESO method, Eng. Optim., 55, 197-213, (2023) · Zbl 1523.74126
[11] Xu, B.; Han, Y.; Zhao, L., Bi-directional evolutionary topology optimization of geometrically nonlinear continuum structures with stress constraints, Appl. Math. Model., 80, 771-791, (2020) · Zbl 1481.74628
[12] Zhang, W.; Li, D.; Zhou, J.; Du, Z.; Li, B.; Guo, X., A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints, Comput. Methods Appl. Mech. Eng., 334, 381-413, (2018) · Zbl 1440.74330
[13] Zhang, W.; Jiang, S.; Liu, C.; Li, D.; Kang, P.; Youn, S. K.; Guo, X., Stress-related topology optimization of shell structures using IGA/TSA-based Moving Morphable Void (MMV) approach, Comput. Methods Appl. Mech. Eng., 366, Article 113036 pp., (2020) · Zbl 1442.74186
[14] Burger, M.; Stainko, R., Phase-field relaxation of topology optimization with local stress constraints, SIAM. J. Control Optim., 45, 1447-1466, (2006) · Zbl 1116.74053
[15] Aranda, E.; Bellido, J. C.; Donoso, A., Toptimiz3D: a topology optimization software using unstructured meshes, Adv. Eng. Softw., 148, Article 102875 pp., (2020)
[16] He, G.; Huang, X.; Wang, H.; Li, G., Topology optimization of periodic structures using BESO based on unstructured design points, Struct. Multidiscip. Optim., 53, 271-275, (2016)
[17] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes, Struct. Multidiscip. Optim., 45, 329-357, (2012) · Zbl 1274.74402
[18] Nguyen-Xuan, H., A polytree-based adaptive polygonal finite element method for topology optimization, Int. J. Numer. Methods Eng., 110, 972-1000, (2017) · Zbl 07866616
[19] Zhuang, Z.; Xie, Y. M.; Li, Q.; Zhou, S., A 172-line Matlab code for structural topology optimization in the body-fitted mesh, Struct. Multidiscip. Optim., 66, 11, (2023)
[20] Park, J.; Sutradhar, A., A multi-resolution method for 3D multi-material topology optimization, Comput. Methods Appl. Mech. Eng., 285, 571-586, (2015) · Zbl 1423.74757
[21] Kim, D.; Ji, Y.; Lee, J.; Yoo, J.; Min, S.; Jang, I. G., A MATLAB code of node-based topology optimization in 3D arbitrary domain for additive manufacturing, Struct. Multidiscip. Optim., 65, 311, (2022)
[22] Li, Y.; Ding, J.; Zhang, Z.; Zhou, X.; Makvandi, M.; Yuan, P.; Xie, Y. M., Practical application of multi-material topology optimization to performance-based architectural design of an iconic building, Compos. Struct., 325, Article 117603 pp., (2023)
[23] Alacoque, L.; Watkins, R. T.; Tamijani, A. Y., Stress-based and robust topology optimization for thermoelastic multi-material periodic microstructures, Comput. Methods Appl. Mech. Eng., 379, Article 113749 pp., (2021) · Zbl 1506.74260
[24] Liu, B.; Cui, Y., Topology optimization of multi-material structures considering anisotropic yield strengths, Comput. Methods Appl. Mech. Eng., 418, Article 116520 pp., (2024) · Zbl 1536.74184
[25] Liu, P.; Shi, L.; Kang, Z., Multi-material structural topology optimization considering material interfacial stress constraints, Comput. Methods Appl. Mech. Eng., 363, Article 112887 pp., (2020) · Zbl 1436.74059
[26] Feng, Y.; Noda, M.; Noguchi, Y.; Matsushima, K.; Yamada, T., Multi-material topology optimization for additive manufacturing considering dimensional constraints, Comput. Methods Appl. Mech. Eng., 410, Article 116027 pp., (2023) · Zbl 1539.74292
[27] Kundu, R. D.; Li, W.; Zhang, X. S., Multimaterial stress-constrained topology optimization with multiple distinct yield criteria, Extreme Mech. Lett., 54, Article 101716 pp., (2022)
[28] Guo, X.; Zhang, W.; Zhong, W., Stress-related topology optimization of continuum structures involving multi-phase materials, Comput. Methods Appl. Mech. Eng., 268, 632-655, (2014) · Zbl 1295.74081
[29] Chu, S.; Xiao, M.; Gao, L.; Li, H., A level set-based method for stress-constrained multimaterial topology optimization of minimizing a global measure of stress, Int. J. Numer. Methods Eng., 117, 800-818, (2019) · Zbl 07865238
[30] Emmendoerfer, H.; Maute, K.; Fancello, E. A.; Silva, E. C.N., A level set-based optimized design of multi-material compliant mechanisms considering stress constraints, Comput. Methods Appl. Mech. Eng., 391, Article 114556 pp., (2022) · Zbl 1507.74264
[31] Kim, C.; Lee, J.; Yoo, J., Machine learning-combined topology optimization for functionary graded composite structure design, Comput. Methods Appl. Mech. Eng., 387, Article 114158 pp., (2021) · Zbl 1507.74310
[32] Qian, C.; Ye, W., Accelerating gradient-based topology optimization design with dual-model artificial neural networks, Struct. Multidiscip. Optim., 63, 1687-1707, (2021)
[33] White, D. A.; Arrighi, W. J.; Kudo, J.; Watts, S. E., Multiscale topology optimization using neural network surrogate models, Comput. Methods Appl. Mech. Eng., 346, 1118-1135, (2019) · Zbl 1440.74319
[34] Zuo, W.; Saitou, K., Multi-material topology optimization using ordered SIMP interpolation, Struct. Multidiscip. Optim., 55, 477-491, (2017)
[35] Liao, H., An incremental form interpolation model together with the Smolyak method for multi-material topology optimization, Appl Math Model, 90, 955-976, (2021) · Zbl 1481.74618
[36] Liao, H., A single variable-based method for concurrent multiscale topology optimization with multiple materials, Comput. Methods Appl. Mech. Eng., 378, Article 113727 pp., (2021) · Zbl 1506.74285
[37] Cheng, G.; Guo, X., epsilon-relaxed approach in structural topology optimization, Struct. Optim., 13, 258-266, (1997)
[38] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 605-620, (2010)
[39] Deng, H.; Vulimiri, P. S.; To, A. C., An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB, Optim. Eng., 23, 1733-1757, (2022) · Zbl 1496.74108
[40] Jeong, S. H.; Choi, D. H.; Yoon, G. H., Separable stress interpolation scheme for stress-based topology optimization with multiple homogenous materials, Finite Elements Anal. Des., 82, 16-31, (2014)
[41] Xu, S.; Liu, J.; Zou, B.; Li, Q.; Ma, Y., Stress constrained multi-material topology optimization with the ordered SIMP method, Comput. Methods Appl. Mech. Eng., 373, Article 113453 pp., (2021) · Zbl 1506.74308
[42] Ogawa, S.; Yamada, T., Stress constraint topology optimization of coupled thermo-mechanical problems using the temperature dependence of allowable stress, Comput. Struct., 281, Article 107006 pp., (2023)
[43] Lazarov, B. S.; Sigmund, O., Filters in topology optimization based on Helmholtz-type differential equations, Int. J. Numer. Methods Eng., 86, 765-781, (2011) · Zbl 1235.74258
[44] Babuška, I.; Suri, M., Locking effects in the finite element approximation of elasticity problems, Numer. Math., 62, Article 439463 pp., (1992) · Zbl 0762.65057
[45] Ainsworth, M.; Parker, C., Unlocking the secrets of locking: finite element analysis in planar linear elasticity, Comput. Methods Appl. Mech. Engrg., 395, Article 115034 pp., (2022) · Zbl 1507.74441
[46] Svanberg, K., A class of globally convergent optimization methods based on conservative convex separable approximations, Siam J. Optim., 12, 555-573, (2001) · Zbl 1035.90088
[47] Liu, K.; Tovar, A., An efficient 3D topology optimization code written in Matlab, Struct. Multidiscip. Optim., 50, 1175-1196, (2014)
[48] Geuzaine, C.; Remacle, J. F., Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 1309-1331, (2009) · Zbl 1176.74181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.